摘要 — 刚度变化和实时位置反馈对于任何机器人系统都至关重要,但最重要的是对于有源和可穿戴设备与用户和环境的交互。目前,对于紧凑尺寸,缺乏提供高保真反馈并保持设计和功能完整性的解决方案。在这项工作中,我们提出了一种新型最小离合器,它集成了刚度变化和实时位置反馈,其性能优于传统的卡住解决方案。我们详细介绍了离合器的集成设计、建模和验证。初步实验结果表明,在最大力密度为 15.64 N/cm 2 时,离合器的阻抗力变化接近 24 倍。我们通过实验验证了离合器在以下方面的表现:(1) 增强软执行器的弯曲刚度,使软操作器的夹持力提高 73%;(2) 使软圆柱执行器能够执行全向运动;(3) 为手势检测提供实时位置反馈,为动觉触觉反馈提供阻抗力。本文介绍了功能组件,重点介绍了集成设计方法,这将对软机器人和可穿戴设备的发展产生影响。
1英寸测试过滤器特别推荐用于研发实验室应用。它们可广泛用于各种类型的流体,例如墨水、抗蚀剂和显影剂,应用范围广泛,从半导体、大电子和化学工业到一般工业应用。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
01 简介 4 操作员优势 服务和质量保证 02 操作模式 6 测量原理 CMOS 技术 03 技术信息 8 设备的一般规格 机械规格 电气数据显示 测量范围 连接器分配 其他气体的换算系数 压力损失 温度补偿 压力补偿 04 安装 11 一般提示 安装位置/地点 机械管道 电气连接/电源 气体供应 05 操作和服务 13 预热时间 零点检查服务 污染时的清洁 更换电池 返回 06 警报和开关功能 15 各个功能详情 功能设置图 警报情况 07 累加器 18 一般功能重置 08 尺寸 19 09 附件 21 压力下降 类型代码 污染声明
•转向镜和检测器之间的光距离:对于较大距离的精度较高。因此,应选择较大的距离。第一个转向镜应靠近波动源。•光束直径:具有相同的激光束位置的绝对变化,较小的直径会导致4 QD象限的功率差异更强,因此会导致更陡峭的控制信号。这就是为什么直径较小的激光束可以以较高的精度定位。•强度:检测器的分辨率进一步取决于击中敏感区域的强度。这可以通过适当的光学过滤器选择和电子方式进行优化(另请参见第5.5节)来改变。•重复率和脉冲持续时间:可以针对不同的激光参数优化控制器带宽。较高的带宽导致更快的反应,因此在快速波动的情况下,精度更高。
型号命名法 - 一般概述3一般信息4物理数据6水平安装7空气排放9横向安装10垂直安装10垂直安装11管道安装13水环热泵应用14地面环路热泵应用15地下水热泵应用15地下水热泵应用17水质量应用17水质质量需求19 TC:水平数据22 27 thefterional Data 27 thefterional Data 27 Themontional Data 27 TCH-SENTIONT 22 27 TCH-dementy 22 27 - 尺寸数据28 TC:前返回垂直上流 - 尺寸数据30 TCV带WSE - 尺寸数据31 TC:垂直服务访问33电气数据34电气数据34电压38电压38电源和低电压接线39电气39电气39电气39电气39电气:低电压接线40电气:ECM 41 ECM 41常规量54常数(COV)54常数(CV)(CV)(CV)(CV)(CV)(CV)(CV)(CV)接线图矩阵56 DIP设置表57控件 - CXM2和DXM2.5 58操作和调试限制59管道系统清洁和冲洗60 TC使用Waterside Encomeizer 61单位检查61单位和系统检查63单元启动过程63单位启动过程64单位操作66预防性处理71启动72启动74启动74启动74启动74启动74 (美国和加拿大)77保修(国际)78修订历史80
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
基于高功率和短脉冲激光器的几项未来实验涉及高能光子的产生,从而将新的重点放在了高能伽马极光法的挑战性主题上。在不久的将来,罗马尼亚的Eli-NP [1]设施将在两个10 PW激光束的帮助下,对高达〜10 23 W/cm 2的强度状态进行独特的研究。尽管低于Schwinger限制(〜10 29 W/cm 2)[2],这种强度制度为理论上预期的QED现象的实验研究开辟了道路,例如辐射反应和辅助成对的产生,在高强度激光脉冲和高能量电子之间的碰撞中(通过Laser Encelons之间的碰撞)(通过Laser Eccelfield aCcelfield aCceleratife)(创建)。在这些实验中,较高的兴趣是在接近GEV或GEV量表下对产生光子的极化和能量的测量。
01 简介 4 操作员优势 服务和质量保证 02 操作模式 6 测量原理 CMOS 技术 03 技术信息 8 设备的一般规格 机械规格 电气数据显示 测量范围 连接器分配 其他气体的换算系数 压力损失 温度补偿 压力补偿 04 安装 11 一般提示 安装位置/地点 机械管道 电气连接/电源 气体供应 05 操作和服务 13 预热时间 零点检查服务 脏污时的清洁 更换电池 返回 06 警报和开关功能 15 各个功能详情 功能设置图 警报情况 07 累加器 18 一般功能重置 08 尺寸 19 09 附件 21 压力下降 类型代码 污染声明