编辑:Hubert Saleur 我们研究在配备 Fubini-Study 度量的 Bloch 球面上连接任意源状态和目标状态的时间最优和时间次优量子哈密顿演化的复杂性。这项研究分多个步骤进行。首先,我们通过路径长度、测地线效率、速度效率和连接源状态和目标状态的相应动态轨迹的曲率系数来描述每个幺正薛定谔量子演化。其次,从经典的概率设置开始,在仅对系统物理有部分了解的情况下,可以使用所谓的信息几何复杂性来描述弯曲统计流形上熵运动的复杂性,然后我们过渡到确定性量子设置。在这种情况下,在提出量子演化的复杂性定义之后,我们提出了量子复杂性长度尺度的概念。具体来说,我们讨论了这两个量的物理意义,即布洛赫球面上指定从源状态到目标状态的量子力学演化的区域的可访问(即部分)和可访问(即全部)参数体积。第三,在计算了两个量子演化的复杂性测量和复杂性长度尺度之后,我们将我们的测量行为与路径长度、测地线效率、速度效率和曲率系数的行为进行比较。我们发现,一般来说,高效的量子演化比低效的演化复杂度要低。然而,我们还观察到复杂性不仅仅是长度。事实上,弯曲程度足够的长路径可以表现出比曲率系数较小的短路径更简单的行为。
成就 LLNL 整合了工程、材料科学、物理、化学、数据科学、建模和仿真以及制造方面的专业知识,共同设计创新解决方案。例如,材料科学家研究材料的化学、电子、结构和动力学特性,包括聚合物、合金、陶瓷、泡沫和仿生材料。研究人员还探索了增强原料开发、制造技术和表征方法的方法,同时研究了可能影响长期性能的材料老化和降解。利弗莫尔专家利用人工智能 (AI) 和数据科学的力量来优化设计并实现材料科学的快速进步。LLNL 的广泛资源为这些成就做出了贡献,例如:
金属配合物因其在生物领域的用途而被认为在治疗中起着至关重要的作用 [1,2]。由于过渡金属配合物在生物技术和癌症治疗中的广泛用途,对过渡金属配合物与 DNA 之间相互作用的研究引起了广泛的兴趣 [3-8]。金属配合物是具有生物学意义的一类重要化学物质。这类物质在医学上经常用作 MRI 中的造影剂、放射性药物、溃疡和关节炎的治疗以及癌症的化疗。通常使用许多实验方法来追踪中性 pH 水溶液中 DNA 与金属配合物之间的相互作用,作为金属配合物-DNA 摩尔比的函数,这可能为这种联系提供间接证据 [9]-。铂和钌离子是迄今为止研究最多的金属离子,被认为是可能的抗癌药物的配位中心。许多抗癌药物以 DNA 作为关键靶分子。为了了解药物分子如何与 DNA 相互作用,研究了与 DNA 结合的金属配合物。
用复杂的多羽状肌纤维结构构建 3D 骨骼肌组织 Maria A. Stang, 1,2 Andrew Lee, 2 Jacqueline M. Bliley, 2 Brian D. Coffin, 1 Saigopalakrishna S. Yerneni, 2 Phil G. Campbell, 2 Adam W. Feinberg 1,2* 1 美国宾夕法尼亚州匹兹堡卡内基梅隆大学材料科学与工程系 15213 2 美国宾夕法尼亚州匹兹堡卡内基梅隆大学生物医学工程系 15213 *电子邮箱:feinberg@andrew.cmu.edu 关键词:3D 生物打印、骨骼肌、组织工程、FRESH、胶原蛋白
1 莫斯科谢切诺夫第一国立医科大学(谢切诺夫大学)儿童牙科和正畸学系,俄罗斯莫斯科 119991;Olesya.V.Dudnik@yandex.ru 2 大西洋科学技术学术出版社,美国马萨诸塞州波士顿 01233 3 自主非营利组织“科学评论出版社”(Nauchnoe Obozrenie),俄罗斯莫斯科 127051 4 国立管理大学数字化转型管理研究所,俄罗斯莫斯科 109542;nikolay.kuznetsov53@gmail.com 5 莫斯科鲍曼国立技术大学基础科学学院数学模拟系,俄罗斯莫斯科 105005;marina.podzorova@inbox.ru 6 东北联邦大学数理经济学和应用信息科学系,俄罗斯雅库茨克 677009; irina.v.nikolaeva@lenta.ru 7 莫斯科理工大学公共管理与法律系,107023 莫斯科,俄罗斯;larissavatutina@yandex.ru 8 乌德穆尔特国立大学金融、会计与经济数学方法系,426034 伊热夫斯克,俄罗斯;ekaterina.khomenko@yahoo.com 9 普列汉诺夫俄罗斯经济大学历史与哲学系人道主义培训中心,117997 莫斯科,俄罗斯;marina.ivleva.2014@inbox.ru * 通信地址:info@astap.net 或 marina.vasiljeva2017@gmail.com
摘要:数字技术是创业活动的关键资源,人们对数字创业非常感兴趣。虽然许多研究都集中在数字技术在创业中的作用以及它们如何塑造这个领域,但对数字创业的关键参与者的研究相对较少。本研究使用来自 Crunchbase 和 Twitter API 以及学习机的数据,试图回答“谁是数字企业家?”的问题。 本研究报告称,人工智能和数据分析 (AIDA) 行业的数字企业家比非数字企业家更有可能是男性,并且更活跃且在线联系更紧密。此外,他们往往比其他非数字企业家更外向,更不认真和随和。我们的研究结果有助于更清楚地了解数字企业家,这将引起投资者、政策制定者、当前和未来的数字企业家和教育工作者的极大兴趣。
摘要:人工智能 (AI) 是一种强大的技术,具有多种功能,如今在所有行业中都开始显现出来。然而,与其他行业相比,人工智能在建筑行业的普及程度相当有限。此外,尽管人工智能是建筑环境研究的热门话题,但研究建筑行业人工智能采用水平低的原因的综述研究有限。本研究旨在通过确定人工智能的采用挑战以及为建筑行业提供的机遇来缩小这一差距。为了实现这一目标,该研究采用了 PRISMA 协议的系统文献综述方法。此外,文献的系统综述侧重于建筑项目生命周期的规划、设计和施工阶段。审查结果表明:(a) 人工智能在规划阶段特别有益,因为建筑项目的成功取决于准确的事件、风险和成本预测;(b) 采用人工智能的主要机会是通过使用大数据分析和改进工作流程来减少花在重复任务上的时间; (c) 将人工智能融入建筑工地的最大挑战是该行业的碎片化性质,这导致了数据获取和保留的问题。研究结果为建筑行业的各方提供了有关人工智能适应性的机会和挑战的信息,并有助于提高市场对人工智能实践的接受度。
1 昆士兰科技大学建筑与建筑环境学院,2 George Street,布里斯班 QLD 4000,澳大利亚 2 圣卡塔琳娜联邦大学技术学院,Campus Universitario,Trindade,Florian ó polis,SC 88040-900,巴西 3 萨拉曼卡大学 Bisite 研究小组,37007 萨拉曼卡,西班牙;corchado@usal.es 4 空气研究所,物联网数字创新中心,37188 萨拉曼卡,西班牙 5 大阪工业大学工程学院电子、信息和通信系,大阪 535-8585,日本 6 阿卜杜勒阿齐兹国王大学高性能计算中心,Al Ehtifalat St,吉达 21589,沙特阿拉伯; rmehmood@kau.edu.sa 7 香港树仁大学经济及金融系,香港北角伟翠街 10 号,中国;ymli@hksyu.edu 8 亚利桑那州立大学公共事务学院,美国亚利桑那州凤凰城北中央大道 411 号,邮编 85004;karen.mossberger@asu.edu 9 昆士兰科技大学管理学院,澳大利亚昆士兰州布里斯班乔治街 2 号,邮编 4000;kevin.desouza@qut.edu.au * 通讯地址:tan.yigitcanlar@qut.edu.au;电话: +61-7-3138-2418
1 昆士兰科技大学建筑环境学院,2 George Street,布里斯班 4000,昆士兰州,澳大利亚;ruth.kankanamge@hdr.qut.edu.au (N.K.); massimo.regona@hdr.qut.edu.au (M.R.); andres.ruizmaldonado@connect.qut.edu.au (A.R.M.); bridget.rowan@connect.qut.edu.au (B.R.); hanseung.ryu@connect.qut.edu.au (A.R.)2 昆士兰科技大学管理学院,2 George Street,布里斯班 4000,昆士兰州,澳大利亚; kevin.desouza@qut.edu.au 3 萨拉曼卡大学 Bisite 研究小组,37007 萨拉曼卡,西班牙;corchado@usal.es 4 航空研究所,物联网数字创新中心,37188 萨拉曼卡,西班牙 5 大阪工业大学工学院电子、信息与通信系,大阪 535-8585,日本 6 阿卜杜勒阿齐兹国王大学高性能计算中心,Al Ehtifalat St,吉达 21589,沙特阿拉伯;rmehmood@kau.edu.sa 7 香港树仁大学可持续房地产研究中心,10 Wai Tsui Cres,北角,香港,中国;ymli@hksyu.edu * 通信地址:tan.yigitcanlar@qut.edu.au;电话: + 61-7-3138-2418