焦虑、抑郁和精神分裂症是复杂的精神疾病,其特征是神经回路、神经递质系统和大脑连接中断,导致情绪调节和认知功能受损。本综述研究了影响这些疾病的遗传、环境和神经生物学因素,强调了神经递质(如血清素、多巴胺和去甲肾上腺素)在情绪调节、应激反应和神经可塑性中的重要作用。这些发现强调了个性化治疗方法的必要性。本综述还探讨了将药物干预与非药物治疗方式相结合的综合策略,包括针灸、草药和正念,这些策略有望实现个性化治疗。神经成像和神经刺激技术的进步,如特征向量中心性映射和机器学习驱动的分析,提供了对大脑连接的更深入了解,并能够实施更有针对性的干预措施。这对于精神分裂症尤其重要,因为多巴胺介导的纹状体前额叶连接中断会导致认知缺陷和临床症状。然而,目前的局限性,例如对这些疾病背后的神经回路的理解不足以及传统治疗对某些亚群的有效性有限,凸显了现有研究和治疗方法中的关键差距。此外,本文还讨论了如何将计算模型与传统医学相结合以增强我们对神经递质相互作用和神经通路的理解。这种整合促进了创新疗法,既能解决短期症状,又能解决长期恢复能力。这种跨学科方法将基础神经科学与临床实践联系起来,为有效的个性化治疗铺平了道路,并为精神疾病患者带来了新的希望。
call体梗塞的管理主要涉及解决潜在的血管危险因素并防止进一步的缺血性事件。抗血小板疗法,例如阿司匹林或双重抗血小板方案,是治疗的基石。汀类药物对于脂质控制和斑块稳定也至关重要[8]。血压优化和血糖控制同样至关重要。在患有严重的动脉狭窄的选定病例中,可以考虑血运重建程序,例如颈动脉内膜切除术或支架[9]。双重抗血小板治疗(DAPT)已显示通过减少血小板聚集来减轻复发性缺血事件,尤其是在具有明显的血管狭窄的高危患者中[9]。针对个人损害量身定制的康复对于恢复,强调运动,认知和功能改善至关重要[8]。
个性化医学和数字健康中的许多问题都取决于对高分辨率患者监测产生的连续时间功能生物标志物和其他复杂数据结构的分析。在此上下文中,这项工作提出了基于最佳subsset选择的指标空间中的多变量,功能,甚至更一般结果的新的新变量选择方法。我们的框架适用于几种类型的回归模型,包括线性,分位数或非参数添加剂模型,以及广泛的随机响应,例如单变量,多变量欧几里得数据,功能性,甚至随机图。我们的分析表明,我们所提出的方法在准确性方面的表现优于最先进的方法,尤其是在速度方面,与各种统计响应的竞争对手相比,作为数学功能的情况,对竞争对手的几个数量级改善。尽管我们的框架是一般的,并且不是为特定的回归和科学问题而设计的,但文章是独立的,专注于生物医学应用。在临床领域,为生物统计学,统计数据和人工智能专业人士的宝贵资源是对这一新技术AI-ERA中可变选择问题感兴趣的人工智能的宝贵资源。关键字:变量选择,多元数据,复杂的统计响应,数字健康,个性化医学。
家庭作业协作可以与同学讨论作业,但最终,您必须能够独自编写解决方案并列出所有参与的名称。此外,这也是小组(2-3个人最大)的合作,每个人都为讨论做出了贡献。不允许听取他人的讨论(例如在线论坛)。可以(并鼓励)在ED上询问有关讲座和家庭作业澄清的问题,但请注意,请不要在与作业相关的公共帖子中揭示与ED讨论有关的公共帖子中的特定解决方案或方法,请在必要时使用私人帖子。
增强抵御经济冲击的韧性是最重要的优势之一。金融机构在动态环境中运营,其特点是周期性的经济变化、意外危机和系统性风险。先进的风险管理工具,如机器学习 (ML) 算法和预测分析,使机构能够有效地预测和减轻这些冲击。通过分析历史和实时数据,这些工具提供了预警系统并支持动态压力测试,使机构能够在漏洞升级为危机之前识别它们 [27]。例如,在 COVID-19 大流行期间,采用先进风险框架的机构能够主动调整投资组合和管理流动性,在前所未有的市场混乱中减少损失并保留资本 [28]。
这项工作提出将量子电路复杂性(实现量子变换所需的最少基本操作数)确立为合法的物理可观测量。我们证明电路复杂性满足物理可观测量的所有要求,包括自伴随性、规范不变性和具有明确不确定关系的一致测量理论。我们开发了用于测量量子系统复杂性的完整协议,并展示了其与规范理论和量子引力的联系。我们的结果表明,计算要求可能构成与能量守恒一样基本的物理定律。该框架提供了对量子信息、引力和时空几何出现之间关系的洞察,同时提供了实验验证的实用方法。我们的结果表明,物理宇宙可能受能量和计算约束的支配,这对我们理解基础物理具有深远的影响。关键字
作为全球运营的支柱,制造业供应链也在不断发展。工业 4.0 技术(包括物联网和机器人技术)正在实现智能制造和实时运营优化。近岸外包和回岸外包等趋势正在重塑供应网络,强调敏捷性和贴近市场。大规模定制和绿色制造实践正在推动向更灵活和可持续的制造系统转变。Rakesh Singh 博士将在三小时的演讲中追溯全球供应链的现状。他将整合 ISCM 供应链排名的经验,并规划斯里兰卡的供应链如何从印度供应链的成功中汲取宝贵经验。通过利用这些见解,斯里兰卡可以创建敏捷、有弹性和可持续的供应链,确保全球市场的长期增长和竞争力。
摘要 - 社会机器人导航算法通常在过度简化的场景中进行策划,禁止提取有关其与现实领域相关的实用见解。我们的主要见解是,了解社会机器人导航方案的固有复合物可以帮助表征现有导航算法的局限性,并提供可行的方向以进行改进。通过探索最近的文献,我们确定了一系列有助于方案复杂性的因素,在上下文和机器人相关的因素之间消除了歧义。然后,我们进行了一项模拟研究,研究了对上下文因素的操纵如何影响各种导航算法的性能。我们发现,密集和狭窄的环境与性能下降最密切相关,而代理策略的异质性和相互作用的方向性的效果不太明显。我们的发现激发了在更高复杂性设置下发展和测试算法的转变。