1 莫斯科谢切诺夫第一国立医科大学(谢切诺夫大学)儿童牙科和正畸学系,俄罗斯莫斯科 119991;Olesya.V.Dudnik@yandex.ru 2 大西洋科学技术学术出版社,美国马萨诸塞州波士顿 01233 3 自主非营利组织“科学评论出版社”(Nauchnoe Obozrenie),俄罗斯莫斯科 127051 4 国立管理大学数字化转型管理研究所,俄罗斯莫斯科 109542;nikolay.kuznetsov53@gmail.com 5 莫斯科鲍曼国立技术大学基础科学学院数学模拟系,俄罗斯莫斯科 105005;marina.podzorova@inbox.ru 6 东北联邦大学数理经济学和应用信息科学系,俄罗斯雅库茨克 677009; irina.v.nikolaeva@lenta.ru 7 莫斯科理工大学公共管理与法律系,107023 莫斯科,俄罗斯;larissavatutina@yandex.ru 8 乌德穆尔特国立大学金融、会计与经济数学方法系,426034 伊热夫斯克,俄罗斯;ekaterina.khomenko@yahoo.com 9 普列汉诺夫俄罗斯经济大学历史与哲学系人道主义培训中心,117997 莫斯科,俄罗斯;marina.ivleva.2014@inbox.ru * 通信地址:info@astap.net 或 marina.vasiljeva2017@gmail.com
摘要:数字技术是创业活动的关键资源,人们对数字创业非常感兴趣。虽然许多研究都集中在数字技术在创业中的作用以及它们如何塑造这个领域,但对数字创业的关键参与者的研究相对较少。本研究使用来自 Crunchbase 和 Twitter API 以及学习机的数据,试图回答“谁是数字企业家?”的问题。 本研究报告称,人工智能和数据分析 (AIDA) 行业的数字企业家比非数字企业家更有可能是男性,并且更活跃且在线联系更紧密。此外,他们往往比其他非数字企业家更外向,更不认真和随和。我们的研究结果有助于更清楚地了解数字企业家,这将引起投资者、政策制定者、当前和未来的数字企业家和教育工作者的极大兴趣。
摘要:人工智能 (AI) 是一种强大的技术,具有多种功能,如今在所有行业中都开始显现出来。然而,与其他行业相比,人工智能在建筑行业的普及程度相当有限。此外,尽管人工智能是建筑环境研究的热门话题,但研究建筑行业人工智能采用水平低的原因的综述研究有限。本研究旨在通过确定人工智能的采用挑战以及为建筑行业提供的机遇来缩小这一差距。为了实现这一目标,该研究采用了 PRISMA 协议的系统文献综述方法。此外,文献的系统综述侧重于建筑项目生命周期的规划、设计和施工阶段。审查结果表明:(a) 人工智能在规划阶段特别有益,因为建筑项目的成功取决于准确的事件、风险和成本预测;(b) 采用人工智能的主要机会是通过使用大数据分析和改进工作流程来减少花在重复任务上的时间; (c) 将人工智能融入建筑工地的最大挑战是该行业的碎片化性质,这导致了数据获取和保留的问题。研究结果为建筑行业的各方提供了有关人工智能适应性的机会和挑战的信息,并有助于提高市场对人工智能实践的接受度。
1 昆士兰科技大学建筑与建筑环境学院,2 George Street,布里斯班 QLD 4000,澳大利亚 2 圣卡塔琳娜联邦大学技术学院,Campus Universitario,Trindade,Florian ó polis,SC 88040-900,巴西 3 萨拉曼卡大学 Bisite 研究小组,37007 萨拉曼卡,西班牙;corchado@usal.es 4 空气研究所,物联网数字创新中心,37188 萨拉曼卡,西班牙 5 大阪工业大学工程学院电子、信息和通信系,大阪 535-8585,日本 6 阿卜杜勒阿齐兹国王大学高性能计算中心,Al Ehtifalat St,吉达 21589,沙特阿拉伯; rmehmood@kau.edu.sa 7 香港树仁大学经济及金融系,香港北角伟翠街 10 号,中国;ymli@hksyu.edu 8 亚利桑那州立大学公共事务学院,美国亚利桑那州凤凰城北中央大道 411 号,邮编 85004;karen.mossberger@asu.edu 9 昆士兰科技大学管理学院,澳大利亚昆士兰州布里斯班乔治街 2 号,邮编 4000;kevin.desouza@qut.edu.au * 通讯地址:tan.yigitcanlar@qut.edu.au;电话: +61-7-3138-2418
1 昆士兰科技大学建筑环境学院,2 George Street,布里斯班 4000,昆士兰州,澳大利亚;ruth.kankanamge@hdr.qut.edu.au (N.K.); massimo.regona@hdr.qut.edu.au (M.R.); andres.ruizmaldonado@connect.qut.edu.au (A.R.M.); bridget.rowan@connect.qut.edu.au (B.R.); hanseung.ryu@connect.qut.edu.au (A.R.)2 昆士兰科技大学管理学院,2 George Street,布里斯班 4000,昆士兰州,澳大利亚; kevin.desouza@qut.edu.au 3 萨拉曼卡大学 Bisite 研究小组,37007 萨拉曼卡,西班牙;corchado@usal.es 4 航空研究所,物联网数字创新中心,37188 萨拉曼卡,西班牙 5 大阪工业大学工学院电子、信息与通信系,大阪 535-8585,日本 6 阿卜杜勒阿齐兹国王大学高性能计算中心,Al Ehtifalat St,吉达 21589,沙特阿拉伯;rmehmood@kau.edu.sa 7 香港树仁大学可持续房地产研究中心,10 Wai Tsui Cres,北角,香港,中国;ymli@hksyu.edu * 通信地址:tan.yigitcanlar@qut.edu.au;电话: + 61-7-3138-2418
用于拓扑数据分析的量子算法(TDA)似乎比最佳的经典方法具有指数优势,同时还可以免疫去量化程序和数据加载问题。在本文中,我们提供了复杂性理论的证据,即TDA的核心任务(估计Betti数字)即使对于量子计算机也很棘手。特别是,我们证明,计算贝蒂号的问题完全是#p-hard,而将betti号码近似为乘法误差的问题是NP-HARD。此外,如果仅限于TDA的量子算法,这两个问题都会保留其硬度。由于预计量子计算机不会在次指数时间内解决#p-hard或NP - 硬问题问题,因此我们的结果表明,在最坏情况下,量子算法仅在TDA中仅具有多项式优势。我们通过表明劳埃德(Lloyd),加纳龙(Garnerone)和扎纳迪(Zanardi)开发的TDA的开创性量子算法来支持我们的主张,这在几乎所有情况下都超过了最著名的经典方法上的二次加速。最后,我们认为,如果给出输入数据作为简单的特定而不是作为顶点和边缘列表,则可以恢复量子优势。
解决从工程教育到发展计算思维的复杂性,以应对与可持续发展目标保持一致的当代挑战,这是在不同情况下成功采用的观点。该分支机构中的文献报告说,通过基于模型的,基于项目和询问的计划,计算思维能力的整合有效地实现了,从而促进了学生积极参与对学习的责任[1]。计算思维的子能力,即算法思维,模式识别,抽象和分解[2-4],使任何学科的学生都可以基于实践的复杂问题创建解决方案,并与周围现实相关。,尤其是在工程教育中,要解决特定于特定技术领域的技术和科学领域的新兴问题是相关的[5]。无疑是在连续探索下。
1 可计算性 6 1.1 基本定义和示例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 13 1.2.4 丘奇-图灵论题. . . . . . . . . . . . . . . 13 1.2.5 寻找不可计算函数. . . . . . . . . . . . . . . 13 1.2.6 暂停计算的递归可枚举性. . . . . . . . . . . . . 15 1.2.7 另一个不可计算函数:忙碌海狸游戏. . . . . . . ...
许多量子算法需要使用量子纠错来克服物理量子比特固有的不可靠性。然而,量子纠错会带来一个独特的性能瓶颈,即 T 复杂度,这会使算法作为量子程序的实现比在理想硬件上运行得更慢。在这项工作中,我们发现控制流的编程抽象(例如量子 if 语句)会导致程序的 T 复杂度呈多项式增加。如果不加以缓解,这种减速会削弱量子算法的计算优势。为了能够推理控制流的成本,我们提出了一个成本模型,开发人员可以使用该模型准确分析量子纠错下程序的 T 复杂度并找出减速的根源。为了降低这些成本,我们提出了一组程序级优化,开发人员可以使用它来重写程序以降低其 T 复杂度,使用成本模型预测优化程序的 T 复杂度,然后通过一种简单的策略将其编译为高效电路。我们在 Spire(Tower 量子编译器的扩展)中实现程序级优化。使用一组 11 个使用控制流的基准程序,我们通过经验证明成本模型是准确的,并且 Spire 的优化可以恢复渐近高效的程序,这意味着它们在错误校正下的运行时 T 复杂度等于它们在理想硬件上的时间复杂度。我们的结果表明,在将程序编译成电路之前对其进行优化可以比将程序编译成低效电路然后调用先前工作中发现的量子电路优化器产生更好的结果。在我们的基准测试中,8 个经过测试的量子电路优化器中只有 2 个能够以渐近有效的 T 复杂度恢复电路。与这 2 个优化器相比,Spire 的编译时间减少了 54 × –2400 ×。
在传统的人机操作中,各种代理人的作用和责任的功能分解被分配为先验。例如,在当前的空中交通运营中,尽管在软件的协助下,人类飞行员对飞机的最终控制。多构成的人机和机器机系统将面临变化和潜在不可预测的复杂性的问题,即将在未来的行星,途中和轨道活动的挑战性情况下。因此,重要的是要将决策动态转移给适当的团队成员,即人类或机器,具体取决于哪种代理商最能在时间预算中解决该特定问题。在本文中,我们考虑了解决问题的方面及其建模的各个方面,这些方面影响了决策的结果,这是解决方案质量的函数以及在所需的时间预算中解决问题的可能性。我们专注于大型语言模型(LLM)作为潜在的机器队友,并得出结论,在开发的当前阶段,实用的,预测的性能是不可行的。简单的示例帮助我们说明当前的LLM将需要基本进步,以在团队决策中提供可靠的支持,尤其是在安全至关重要和关键时期领域。这项研究并不是要降低LLM的显着功能的价值,而是要更好地了解技术的适当使用和所需的添加。