对于军用飞机而言,燃气涡轮发动机制造商和最终用户面临的一个关键问题就是耐久性。尤其是加力燃烧段的条件非常恶劣,发动机喷嘴的设计寿命通常只有涡轮发动机其他硬件的一半。目前的喷嘴基于由密封件和襟翼制成的轴对称可变喷嘴。这些组件必须承受极端温度(通常超过 1000°C)以及与加力燃烧器点火相对应的快速热循环。此外,加力燃烧段通常具有燃烧功能不均匀的特点,这会在某些喷嘴瓣上产生热条纹。因此,这些部件会受到非均匀热流的影响,襟翼和密封件的重叠设计尤其明显,从而在整个宽度上产生高热应力。镍基合金通常用于发散襟翼和密封部件。严酷的热机械环境使镍基部件产生大量开裂,再加上高温 1 导致的蠕变变形。结果是部件拆卸增加,直接影响可操作性、维护和成本。军用发动机对热段部件更长使用寿命和更高推重比的追求为陶瓷材料打开了大门。陶瓷基复合材料 (CMC) 适用于暴露在高温(高达 1000°C)下的加力燃烧段,包括高热梯度。因此,人们继续对在军用燃气涡轮发动机中开发、测试和部署 CMC 感兴趣,一些开发已经取得成功。这是为 F/A-18 E/F 超级大黄蜂 2 战斗机提供动力的 F414 发动机喷嘴引入 SiC/C CMC 的情况,以及为阵风 3 战斗机提供动力的 M88 发动机喷嘴外襟翼引入 C/SiC CMC 的情况。考虑用于燃气轮机部件的 CMC 涵盖了通过化学气相渗透 (CVI)、溶胶凝胶路线、聚合物渗透和热解 (PIP) 和熔融渗透 (MI) 4 制造的各种纤维和基质。所得材料能够承受排气喷嘴的高温和热疲劳。然而,CMC 组件的耐久性与其抗氧化性直接相关,这会影响其热机械潜力并导致部件破裂。已经对几种 CMC 密封件进行了地面测试,并在具有代表性的全地面发动机寿命后测量了机械性能。近几年,斯奈克玛推进固体公司 (SPS) 开发了先进的 SiC/SiC 和 C/SiC 材料,包括多层编织和自密封基质。普惠公司和空军研究实验室正在考虑将这些材料用于 F100-PW-229 发动机喷嘴发散密封件,该密封件为 F16 和 F15 战斗机提供动力。本文介绍了发动机经验和后测试特性的结果。将讨论材料系统对燃气轮机喷嘴应用的适用性。
将信息之间的信息(指示或无向)链接。sig1 = ml-dsa.sign(m ||“也存在ED25519 SIG”); sig2 = ed25519.sign(M ||“也存在ML-DSA SIG”); •是一个模式。•旨在根据
菌丝体结合复合材料是一类新型可持续且价格实惠的生物复合材料,最近被引入包装、时尚和建筑领域,作为传统合成材料的替代品。近年来,人们进行了广泛的调查和研究,以探索菌丝体结合复合材料的生产和加工方法以及寻找其潜在应用。然而,这种新型生物复合材料在建筑行业的应用仅限于小规模原型和展览装置。机械性能低、吸水率高以及缺乏标准生产和测试方法等问题仍然是菌丝体结合复合材料用作非结构或半结构元素时需要解决的主要挑战。这篇简短的评论旨在展示菌丝体结合复合材料在建筑领域的应用潜力,包括隔热和隔音以及替代干式墙和瓷砖。本综述总结了有关建筑领域使用的菌丝体结合复合材料的特性的主要可用信息,同时提出了未来研究和开发这些生物复合材料在建筑行业应用的方向。
当代的大规模视觉语言模型(VLM)具有强大的表示能力,使它们无处不在,可以增强图像和文本理解任务。他们经常以对比的方式受到大量图像和相应的文本字幕的对比方式进行训练。尽管如此,VLMS经常在构图推理任务上挣扎,这些任务对对象及其属性的复杂相互作用进行了精细的了解。此失败可以归因于两个主要因素:1)对比的方法传统上专注于从现有数据集中开采负面示例。但是,该模型可能不难区分阳性检查。替代采矿的替代方法是负样本2),但现有的生成方法主要集中于生成与给定图像相关的硬性负面文本。在另一个方向上进行挖掘,即生成与给定文本相关的负面图像样本已被忽略。为了克服这两种限制,我们提出了一个框架,不仅在两个方向上矿山,而且在这两种方式(即图像和文本)中产生了有挑战性的负面样本。利用这些生成硬性负样本,我们在涉及多模式综合推理的任务中显着提高了VLMS的性能。我们的代码和数据集在https://ugorsahin.github.io/enhancing-- vlm.html上发布。
加密协议的理想目标是在协议与其他协议实例组成时进行保障安全性。普遍组合(UC)协议在很强的意义上提供了此保证:即使与不限制的任意协议实例同时组成,协议也可以安全。ever,已知用于执行一般任务的UC协议仅在大多数参与者诚实或在常见参考字符串(CRS)模型中才存在,其中所有分析都可以访问从某些预分发的分布中汲取的常见字符串。此外,即使在理想的身份验证的沟通中也是不可能的,以UC的方式执行许多有趣的任务,而没有诚实的多数或设置假设。因此,一个自然的问题是,是否存在与UC协议仍然低的CRS模型相比,是否存在更多的设置假设。我们在事务所中回答了这个问题:我们提出了替代性和放松的设置,并表明它们可以支持CRS模型中UC协议的一般可行性结果。这些替代假设具有“公共钥匙式结构”的avor:当事方已注册了公共钥匙,不需要完全信任罪名的注册机构,并且无需全球信任和可用。此外,与CRS模型中的已知协议不同,即使违反了设置假设,提出的协议也可以保证一定的安全级别。
已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
包。patran 3.0是由PDA工程创建的计算机软件包的最新版本,用于预处理和后处理有限元代码。[f兼容,Patran 3.0将用于定义组件表面的几何形状TOR纤维放置Windin_操作。这些表面的地貌必须使用Patran的模型替代能力产生。然后将计算机模型加载到硅图形工作站中,以便可以定义光纤放置路径。定义了光纤路径后,生成了FPM的实际机器指令代码。然后将机器指令加载到FPM中,并且可以制造所需的组件。FPM离线软件最初旨在读取Patran 2.5中性文件和I-DEAS(计算机自动化设计(CAD)软件包)通用文件。辛辛那提米拉克龙将评估并建议蒂科尔关于帕特兰3.0代码的兼容性。预计这不会是问题,而Patran 3.0代码将是可用的。
Motu Profiler或Short Motus是一种软件工具,可以从分类学组成,代谢活性成员的丰富性以及菌株群体的多样性方面对微生物群落的生产。为此,它维护了单拷贝系统发育标记基因序列的数据库,该数据库被用作参考,简短读取的元基因组和元文字读数被映射为识别和定量微生物分类群。在这里,我们描述了两个基本协议中最常见的MOTU剖面用例。其他支持协议提供有关其安装和深入指南的信息,以调整其设置,以增加或降低检测和量化分类单元的严格度,以及用于自定义输出文件格式。提供了解释分析结果的指南,以及有关独特功能,方法学细节和工具的开发历史的其他信息。©2021作者。Wiley Perigonicals LLC发布的当前协议。
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
■ 所有标准和出版物 ■ 标准产品 ■ 研讨会论文和 STP ■ 手册、专著和数据系列 ■ 技术报告 ■ 期刊 ■ 阅览室 ■ 作者