摘要:本评论文章收集了最新的热塞和热塑性聚合物的回收技术。有关现有实验程序及其有效性的结果。对于热固性聚合物而言,综述主要集中于纤维增强的聚合物复合材料,重点是基于环氧树脂的系统和碳/玻璃纤维作为增强型,因为其寿命终止管理的环境关注。热过程(流化床,热解)和化学过程(不同类型的溶剂分解)。分析了最新的合并过程(微波炉,蒸汽和超声辅助技术)和非凡的回收尝试(电化学,生物学和带有离子液体)。导致材料降级的机械回收被排除在外。的见解也是针对迄今为止为纤维重复使用的升级方法提供的。至于热塑性聚合物,最常见的聚合物矩阵的最先进的回收方法以及适当的添加剂用于矩阵升级。机械,化学和酶促回收过程被描述了。使用纤维增强的热塑性复合材料是非常新的,因此,提出了最新成就。借助上述所有信息,这项广泛的审查可以作为教育目的的指南,针对聚合物回收的学生和技术人员。
牙齿树脂复合材料由于能够模仿牙齿的自然外观而广泛用于恢复牙科[1]。这些材料由树脂基质和无机填充剂的混合物组成,这些混合物负责复合材料的机械性能。了解树脂复合材料的机械性能对于成功在牙科修复中的应用至关重要。在本文论文中,我们将探讨牙齿树脂复合材料的各种机械性能及其在临床性能中的重要性。此外,我们将讨论影响这些属性和该领域最新发展的因素。牙齿树脂复合材料旨在承受咀嚼和咬伤的力,同时与自然牙齿结构无缝混合。这些复合材料的机械性能在确定其耐用性,强度和对磨损和断裂的耐药性方面起着至关重要的作用[2]。了解这些特性对于牙科专业人员必须在修复过程中选择和应用树脂复合材料做出明智的决定[3]。除了传统的机械性能,例如抗压强度,弯曲强度和耐磨性外,最近的研究还研究了更复杂的特征,例如牙齿树脂复合材料的断裂韧性,微力学行为和抗疲劳性[4]。这些特性为临床环境中材料的寿命和适应性提供了宝贵的见解,使临床医生能够量身定制其治疗计划,以满足每个患者的特定需求[5]。
图2。表征ICOF/PIL复合材料。A,TPPA-SO-SO 3 LI,TPPA-SO 3 LI/P(BVIM-TFSI)复合材料,DMTHA-SI-LI和DMTHA-SI-LI/P(BVIM-TFSI)复合材料的粉末X射线衍射(PXRD)图案。b,用于TPPA-SO 3 li和dmtha-si-li Icofs在77 K下测得的氮气吸附等温线。c,P(BVIM-TFSI),TPPA-SO 3 LI,DMTHA-SI-LI,TPPA-SO 3 LI/P(BVIM-TFSI)复合材料的热重分析曲线和DMTHA-SI-LI/P(BVIM-TFSI)。d,复合材料的摄影图像。插图是具有横截面视图的数字图像。e – f,TPPA-SO-SO 3 LI/P(BVIM-TFSI)复合材料的扫描电子显微镜(SEM)图像和DMTHA-SI-LI/P(BVIM-TFSI)复合材料。g,TPPA-SO 3 li/p(BVIM-TFSI)和DMTHA-SI-LI/P(BVIM-TFSI)复合材料的点火测试的照相图像。h,TPPA-SO-SO 3 LI/P(BVIM-TFSI)和DMTHA-SI-LI/P(BVIM-TFSI)复合材料的傅立叶转换红外(FT-IR)光谱。
摘要:本文旨在概述波音 787 梦想飞机目前正在使用的新材料。787 是当今航空业的巅峰之作,是一个工程奇迹,以其突破性的创新和卓越的技术能力而闻名。最值得注意的是,先进复合材料从未在客机上得到如此广泛的应用,这代表着航空业迈出了复合材料使用新时代的第一步。本文旨在从复合材料、金属和陶瓷三个部分全面概述新材料。本研究将详细说明为什么飞机部件采用新材料,深入研究该材料的特性,强调它的一些缺点,并探索用于提高 787 部件质量的工业技术。这项研究将有助于提供有关新材料的实际应用和缺点的宝贵见解,说明它们甚至在航空业之外的潜在用途,关键词:波音 787 梦想飞机、复合材料、钛、陶瓷、碳纤维 1. 简介 飞机的历史证明了人类对征服天空的不懈追求。它始于 1903 年,当时莱特兄弟进行了第一次动力飞行。从那时起,飞机发展迅速,从简单的双翼飞机发展到复杂的喷气式机器,波音公司在这场革命中发挥了重要作用。自 1916 年成立以来,波音公司制造了经久不衰的飞机,例如在 20 世纪 50 年代彻底改变航空旅行的波音 707,以及改写了长途旅行规则的又名“空中女王”的波音 747。现在,波音公司正在用其最新的突破性飞机——波音 787,彻底改变整个航空业使用的材料。这架飞机挑战了飞机由复合材料和钛等金属制成的极限,并具有新颖的功能和设计,使其比其他飞机更高效。波音 787 梦想飞机有 3 种变体,即 787-8、787-9 和 787-10。787-8 是这 3 种变体中最小的一种,长 57 米,翼展 60 米,高 17 米,总载客量为 248 人。 787 - 9 和 787 - 10 型号的飞机尺寸逐渐增大,其技术规格列于表 1.1 -
最近,人们对热塑性复合材料的兴趣又重新燃起,这主要是由于自动化技术的进步,通过提高制造速度,可以大幅降低成本,同时减少与热固性复合材料制造相关的零件数量和能耗。与此同时,新的材料系统已经开发出来,热塑性复合材料预浸料的质量也随着时间的推移而提高。此外,热塑性复合材料的室温保质期几乎是无限的,生产废料可以重复使用,报废零件可以回收利用,为更可持续的运营和下游市场提供了机会。这些因素促使人们对航空航天、汽车和其他工业应用领域中热塑性复合材料的先进技术产生了浓厚的兴趣。
1 IOPFE Institute,St.26,圣彼得堡194021,俄罗斯; cabri@mail.ru(V.S.G. ); zumisi@gmail.com(D.A.K. ); Sviatoslab。 ); ); pkervycova@mail.offe(P.D.C. ); (S.I.P. ); milk@mail.io.ru(S.A.R. ); ); (N.D.P. ); 2物理系。 vsysoev@stu。 ); solatinin1994@gmail.com(M.A.S. ); 柏林,柏林和能源,柏林,柏林,德国; 4 NRC“学院研究所”,学院学院。 1,莫斯科123182,俄罗斯;1 IOPFE Institute,St.26,圣彼得堡194021,俄罗斯; cabri@mail.ru(V.S.G.); zumisi@gmail.com(D.A.K.); Sviatoslab。);); pkervycova@mail.offe(P.D.C.); (S.I.P.); milk@mail.io.ru(S.A.R.);); (N.D.P.);2物理系。 vsysoev@stu。); solatinin1994@gmail.com(M.A.S.);柏林,柏林和能源,柏林,柏林,德国; 4 NRC“学院研究所”,学院学院。1,莫斯科123182,俄罗斯;
a b s t r a c t最近逐步搜索用于电气应用的环保和可持续的材料,这是由于对有效,更绿色的解决方案的需求所刺激的。为了满足这些期望,一类有希望的材料称为粘土增强的再生塑料复合材料。提高机械强度,较少的热膨胀和较高的火焰耐药性都是将粘土纳米颗粒掺入回收塑料中的好处,这对于维持电气系统的可靠性和安全性至关重要。粘土增强的再生塑料复合材料已在包括电气的各种应用中使用。将废塑料成分(例如聚苯乙烯或高密度聚乙烯)与粘土(例如蒙脱石)结合使用,以使用冷压缩技术来创建复合材料。与原始塑料材料相比,所得的复合材料具有更好的机械,热和吸水特性。此外,已经表明,将粘土添加到复合材料中可以提高其电气质量,从而适合于电气应用。介电强度,介电常数和电导率测试均已用于评估复合材料的电性能。根据发现,粘土钢筋可回收的塑料复合材料可用于电气应用,例如电绝缘体的产生。利用这些复合材料可以帮助开发各种应用的可持续材料并减少塑料废物。
摘要:立体光刻已成为以高精度制造复杂结构的最新方法。使用树脂的组件的性质较差。当前的研究研究了SLA技术制造的纳米石材复合材料的性能的改善。比较普通树脂和0.2%,0.2%,0.5%,1%,3%和5%(w / v)的纳米含石与紫外线可策展的树脂的特性。进行了各种分析,包括粘度,紫外线镜检查,水分含量,吸水,凝胶含量,拉伸,弯曲,硬度测试和显微镜表征。实验的结果表明,测试的样品的每个百分比的结果(例如样品特性)的结果差异,这表明添加纳米石膏的百分比越大(5%),样品将会出现,并且会出现较少的光。粘度测试表明,添加到树脂中的纳米石膏的百分比越大,粘度越大。紫外线光谱测试产生了有关电子结构和分子结构的信息,例如它们的组成,纯度和集中。从水分含量分析中进行的观察发现,纳米含量较高的标本中的水分含量影响了物理和机械性能,从而导致更轻松的翘曲,破裂,降低强度等。拉伸和弯曲测试表明,添加纳米石膏的百分比越大,对物理和机械性能(包括骨折)的影响越大。然而,当添加不同百分比的纳米石膏时,某些测试并未始终产生样品之间的显着变化,这在化学耐药性测试中尤其明显。这项研究为通过SLA方法制造的纳米石材复合材料的应用提供了宝贵的见解。
摘要:在汽车,航空航天和电子行业等行业中对轻质和耐用材料的需求不断增长,促使异性结构双层复合材料的发展,将金属的结构完整性与聚合物的多功能性结合在一起。本研究介绍了不锈钢(SUS)和聚酰胺66(PA66)之间的临界界面,重点是表面处理和各种硅烷偶联剂在增强异径sus/pa66双层复合材料的粘附强度方面的关键作用。通过系统的表面修饰(通过扫描电子显微镜,原子力显微镜和接触角分析显示),该研究评估了增加表面积,粗糙度和SUS能量的影响。X射线光电子光谱评估证实了特定硅烷偶联剂的战略选择。尽管某些偶联剂几乎没有影响力学,但值得注意的是,氨基丙基三氧基硅烷(A1S)和3-甘油同基氧甲基三甲氧基硅烷(ES)显着增强了杂气结的机械性能。这些进步归因于金属 - 聚合物界面处的界面相互作用。这项研究强调了靶向表面处理的重要性,以及明智的耦合剂在优化金属 - 聚合物复合材料的界面粘附和整体性能方面的明智选择,为材料的制造提供了有价值的见解,在减轻重量和增强耐用性的情况下,材料的制造是最重要的。