摘要:近年来,牙科材料取得了显著进展,尤其强调了生物活性玻璃和陶瓷复合材料的开发进展。生物活性玻璃促进骨再生和修复的独特能力引起了广泛关注。这导致其在该领域的广泛应用。陶瓷复合材料由于其优异的强度、生物相容性和美观性,作为牙科材料的应用已显示出良好的效果。本综述文章概述了生物活性玻璃和陶瓷复合材料的最新发展,包括它们的特性、制造技术和在牙科领域的应用。本研究将集中于生物活性玻璃在修复牙科、骨增强干预和牙髓治疗领域的应用。将研究陶瓷复合材料在种植牙中的应用,以及它们在其他牙科环境中的预期应用。本综述旨在阐明与使用上述材料相关的困难,包括其易碎性和对精细处理的要求,以及缓解这些困难的合理补救措施。本综述文章说明了生物活性玻璃和陶瓷复合材料的进步能够大大提高各种牙科手术的效果,从而为患者提供更持久、外观更美观、生物相容性的修复体。
摘要:这项研究通过搅拌铸造通过粉煤灰和碳化硅(SIC)钢筋的整合来探索基于铝的复合材料的进步。该过程涉及在700°C的消声炉中熔化合金,逐渐引入粉煤灰和SIC颗粒,同时在450 rpm搅拌12分钟以确保分散体均匀。添加5%SIC和2.5%的粉煤灰导致多种机械性能的显着改善。Tensile强度的显着增强大约增长了约19.56%,而硬度却显示出大约34.67%的大幅增长。此外,疲劳强度显着提高了约26.87%,耐耐磨性的显着增强约为31.45%。这些增强功能强调了整合粉煤灰和SIC钢筋的功效,突出了具有优质机械性能的晚期铝合作材料的潜力。这种方法提出了提高材料性能的有前途的途径,对需要耐用性,强度和耐磨性的各种工业应用产生了影响。
摘要:这项研究研究了在水分和冷冻率的环境暴露条件下,大型3D打印的热塑性复合物质系统的耐用性。。 (CF/ABS)。在加速暴露之后,水分吸收,延伸系数和相关机械性能的降低(经臂强度和弯曲模量)。结果表明,与常规的聚合物复合材料相比,由基于生物的热塑性聚合物复合材料制成的大型3D打印零件更容易受到水分和冷冻 - 丝丝暴露的影响,并具有较高的水分吸收和机械性能的降低。
摘要:作者使用基于碳基于乙基纤维素的可生物降解基质的碳基复合材料探索了基于纸的电子产品的开发,该复合材料基于乙基纤维素和二元酯溶剂。主要重点是用于创建灵活,环保电子设备的屏幕打印技术。这项研究通过考虑各种组合物,包括石墨烯,石墨和碳黑色的各种组成,评估了这些复合材料的流变学测量,电特性,柔韧性和粘附的可打印性。研究发现,某些组合物提供了低于1kΩ /sq的薄板电阻,并且对纸质基板的良好粘附仅具有一层丝网印刷,这表明了商业应用的潜力,例如单使用电子,柔性加热器等。< /div> < /div> < /div>该研究还显示了循环弯曲对准备层的电气参数的影响。这项研究强调了矩阵的生物降解性的重要性,这是有助于可持续电子领域的。总体而言,这项研究提供了开发环保,灵活的电子组件的见解,突出了可生物降解材料在这个不断发展的行业中的作用。
摘要:最近,对具有优异磁性能的先进材料的需求不断增加,特别是在执行器领域。高矫顽力(H ci )是一种必不可少的磁性能,它对于磁执行器中可编程的形状变化至关重要,并对其性能产生深远影响。在本研究中,通过引入 Cu 并更精细地控制执行器复合材料中 Sm 2 Fe 17 − x Cu x N 3 磁性成分的结构和形貌,修改了还原 − 扩散过程的温度(将其从 900°C 降低到 700°C),从而获得了具有高 H ci 的新型 Sm 2 Fe 17 − x Cu x N 3 磁体。因此,Sm 2 Fe 17 − x Cu x N 3 磁体显示出显著的 11.5 kOe 的 H ci,超过了非合金 Sm 2 Fe 17 N 3 在较低温度下达到的 6.9 kOe 的值。通过利用 Sm 2 Fe 17 − x Cu x N 3 复合材料的增强磁性并将聚乙二醇加入弹性体基质中,我们成功制造出坚固的执行器。这种创新方法充分利用了硬磁体作为执行器的优势,在高温条件下具有稳定性、精确控制、长寿命、无线功能和能源效率,凸显了硬磁体在一系列应用中的巨大潜力。关键词:硬磁软执行器、Sm 2 Fe 17 − x Cu x N 3 、还原扩散温度、矫顽力、软机器人、软磁复合材料、Sm − Fe − N
摘要:研究了含有石墨烯纳米片(GNS)的基于乙二烯 - 偏烯 - 烯烯 - 二烯单体(EPDM)单体(EPDM)单体(EPDM)的复合材料的机械,热和γ辐射衰减特性。还研究了聚乙烯乙二醇(PEG)作为兼容器来改善填充剂的分散体。结果表明,与EPDM相比,这些填充剂的综合使用导致机械性能的急剧增加,分别达到了伸缩强度和伸长率的123%和83%。相反,与基于EPDM/B/GN的复合材料相比,在包含EPDM GN和B的复合材料中添加PEG的复合材料具有较低的机械性能。然而,PEG的存在导致获得具有大量衰减系数的复合材料(EPDM/B/GNP),可对伽玛辐射(137 cs,662 keV)优于没有PEG的该复合材料。此外,复合EPDM,B和PEG在断裂时表现出伸长率153%,高于未填充的EPDM。此外,与未填充的EPDM相比,由100个PHR(III)氧化物(III)PHR组成的二元填充系统可导致EPDM复合材料的61%线性阻尼系数达到61%。分别使用扫描电子显微镜和能量分散X射线光谱获得的聚合物基质中形态和填充剂的状态的研究为理解影响伽马射线衰减特性的因素提供了有用的背景。最后,结果还表明,通过调整配方,可以调整用氧化物和石墨烯纳米纤维素增强的EPDM复合材料的机械和热性能。
ICRA 注意到,由于 Michaung 气旋引发的山洪暴发,安得拉邦 Sullurpeta 制造厂的运营中断。为 Enercon Wind energy Private Limited (Enercon) 提供服务的工厂已于 2024 年 2 月恢复运营,订单完好无损。上述设施已投保,在保险调查过程正在进行中,该公司已收到 1 亿卢比的临时付款(根据报告的损失进行调整),并获得了租赁租金减免。此外,客户的提前付款为公司的流动性提供了支持,鉴于事件的不可抗力性质,客户没有采取任何处罚措施。因此,其现金信用额度保持适度利用,具有足够的提款能力。该公司还获得了母公司的支持,但在此期间并未获得支持。
摘要:对实现更可持续制造和循环经济模型的高性能生物材料的需求正在显着增长。卡夫木质素(KL)是一种丰富且功能高的芳香/酚类生物聚合物,是纸浆和造纸工业的主要侧产品,以及最近的第二代生物填充物。在这项研究中,将KL纳入了基于双苯酚A(DGEBA)的二甘油乙醚(DGEBA)和胺固化剂(Jeffamine D-230)的玻璃状环氧系统中,该系统被用作固化剂的部分替换和DGEBA前固化剂和DGEBA前添加剂或反应性添加剂。A 由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。 此外,还研究了KL粒径的效果。 球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。 显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。 最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。 GKL复合材料表现出改善的热机械性能和透明度。由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。此外,还研究了KL粒径的效果。球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。GKL复合材料表现出改善的热机械性能和透明度。使用NMR,TGA,GPC和DLS技术对所有木质素进行了广泛的表征,以相关并证明环氧聚合物表征的结果。
摘要:装有碳基材料的导电聚合物复合材料(CPC)被广泛用于抗固定,电磁干扰屏蔽和可穿戴电子设备的领域。CPC具有碳基填充的电导率反映了其电渗透行为,并且是该领域研究的重点。与实验方法相比,蒙特卡洛模拟可以预测电导率,并分析从微观角度使用影响电导率的因素,从而大大减少了实验的数量,并为导电聚合物的结构设计提供了基础。本评论的重点是具有碳基填充的CPC的蒙特卡洛模型。首先,引入了模型构造的理论基础,并对球形,杆,磁盘和混合填充聚合物的电渗透行为进行了蒙特卡洛模拟,并分析影响从微观观点的电气渗透行为的因素。此外,本文总结了与实际应用更相关的聚合物压电模型和聚合物泡沫结构模型的进展;最后,我们讨论了具有碳基填充物的现有蒙特卡洛模型的缺点和未来的研究趋势。
摘要:由带有天然纤维增强的聚合物基质组成的材料称为天然纤维增强聚合物复合材料(NFRCS)。科学家最近对这些复合材料非常感兴趣,因为它们比常规合成纤维增强的聚合物复合材料提供了改进的性能,其成本较低,并且具有环境优势。然而,包括γ辐射暴露在内的几个因素和纳米颗粒的添加会影响NFRC的性质。本综述将集中于伽马辐射和纳米颗粒对NFRC的机械,热和防水特性的影响。为了帮助创建新的和改进的NFRC用于不同的应用,本综述旨在通过促进纤维和矩阵之间的更好键合,以增强复合材料的整体性能,从而对NFRCS的性质以及伽马射线和纳米颗粒的影响提供全面的了解。关键词:天然纤维,聚合物矩阵,复合材料的性能,伽马射线,纳米颗粒1介绍,一般而言,复合材料可以描述为在微观上至少两种不同材料的异质混合物,具有与其组成部分不同的新型特性,通常具有几乎同质的结构,并且具有几乎同质的结构。可以根据机会结合这种属性混合的机会来量身定制复合材料的质量以满足所需应用的需求(Erden&Ho,2017)。复合材料的机械性能受到纤维结构的极大影响。此外,许多部门目前都在寻找复合材料的新型特性,例如可更新性,几乎没有环境效应和负担能力。天然纤维增强复合材料的优势比传统材料和合成纤维增强的复合材料导致这些领域的研究和创新增加(Neto等,2022)。此外,天然纤维价格便宜,密度低,并且具有许多独特的特征。与其他增强纤维不同,它们是柔性,无毒,无育和生物降解的。此外,它们很容易访问,其独特特性与用作增强剂的其他纤维的特征相似(Aravindh等,2022)。天然植物材料中发现的纤维素纤维由无定形木质素和一些螺旋纤维素微纤维的基质制成。木质素有助于将水保持在纤维内并赋予茎的强度以承受风和重力,这是防御生物学攻击的防御。半纤维素是纤维素和木质素之间的兼容剂,是天然纤维的组成部分。图1描绘了天然纤维的结构(M. K. Gupta&Srivastava,2016年)。