Article title: Sentiment Analysis Based on Machine Learning Algorithms: A Comprehensive Study Authors: song jiang[1], Ela Kumar[2] Affiliations: university of houston[1], k l deemed to be university[2] Orcid ids: 0009-0007-8363-7304[1] Contact e-mail: sjiang24@central.uh.edu License information: This work has been在Creative Commons Attribution许可下发布的开放访问http://creativecommons.org/licenses/4.0/,只要适当地引用了原始工作,就可以在任何媒介中不受限制地使用,分发和复制。可以在https://www.scienceopen.com/上找到条件,使用条款和发布政策。预印度语句:本文是预印本,未经同行评审,正在考虑,并提交给ScienceOpen的预印本进行开放的同行评审。doi:10.14293/pr2199.000601.V2预印本在线发布:2024年2月19日
神经可塑性是指大脑响应内部和外部刺激而改变和适应的能力。通过改变神经元或神经胶质细胞的数量、形成新的回路、加强或削弱特定突触、改变树突棘的数量和/或其他机制,神经可塑性有助于突触强度的动态和适应性变化 [1][2]。然而,神经可塑性的受损与精神和神经系统疾病的发展有关,包括抑郁症样疾病 [3][4]。事实上,重度抑郁症 (MDD) 患者的神经发生和突触可塑性降低 [3]。其他研究表明,在患有 MDD 的个体中观察到神经可塑性异常 [4]。神经可塑性降低可归因于表观遗传机制对参与突触可塑性的基因的转录调控 [4]。这种损伤对与 MDD 相关的认知和情感症状的发展有显著影响 [3]。诱导或利用神经可塑性已成为一种有前途的治疗方法,可以抵消这些适应不良的影响并缓解症状 [3]。开发刺激神经可塑性的新方法可能是补充目前针对神经可塑性的精神疾病疗法的有效方法。然而,仍然需要进一步研究神经可塑性如何促进精神疾病的发展。尽管如此,确定神经可塑性在精神疾病中是如何被调节和改变的,对于开发针对神经可塑性潜在异常的治疗方法是必要的 [3]。
在过去的二十五年中,MAX 相及其衍生物 MXenes 已成为材料研究的焦点。这些化合物无缝融合了陶瓷和金属特性,具有高导热性和电导性、机械强度、低密度和耐极端条件性。它们的多功能性使其成为各种应用的有希望的候选材料,特别是在用于氢气释放的先进光催化和电催化中。此外,MAX 相和 MXenes 是潜在的储氢材料,具有独特的结构,可为高效的氢气储存和释放提供充足的空间,这对于燃料电池等清洁能源技术至关重要。本综述旨在全面分析它们在光催化、电催化和储氢中的作用,重点关注它们的层状晶体结构。MAX 相集成了优越的金属和陶瓷属性,而 MXenes 提供可调节的电子结构,可增强催化性能。持续探索对于充分发挥其潜力、推动清洁能源技术及其他领域至关重要。
图像字幕是一项计算机视觉任务,涉及为图像生成自然语言描述。此方法在各个领域都有许多应用,包括图像检索系统,医学和各种行业。但是,尽管图像字幕进行了重要的研究,但大多数研究都集中在高质量的图像或受控环境上,而没有探索现实世界图像字幕的挑战。现实世界的图像字幕涉及复杂而动态的环境,具有许多关注点,图像通常在质量上非常差,甚至对于人类而言,这也是一项艰巨的任务。本文评估了在不同编码机制,语言解码器和培训程序之上构建的各种模型的性能,使用新创建的现实世界数据集由使用MIT室内场景数据集构建的65多个不同场景类的800多个图像组成。该数据集使用IC3方法字幕,该方法通过汇总来自图像的唯一视图点的标准图像字幕模型所涵盖的详细信息来生成更具描述性字幕。
通过利用量化误差和加性噪声之间的相似性,可以通过使用扩散模型“ denoise”量化引入的伪影来构建基于扩散的图像压缩编解码器。但是,我们确定了这种方法中的三个差距,从而导致量化的数据排除在扩散模型的分布之外:噪声水平,噪声类型和由离散化引起的差距的差距。为了解决这些问题,我们提出了一个新型的基于量化的正向扩散过程,该过程是理论上建立的,并桥接了上述三个差距。这是通过经过精心量身定制的量化时间表以及对均匀噪声训练的扩散模型来实现的。与以前的工作相比,我们提出的架构也会产生一贯的现实和详细的结果,即使是在极低的比特率下,同时保持对原始图像的忠诚度。
基于扩散的生成模型在合成和操纵图像具有巨大的图像方面表现出了令人鼓舞的结果,其中文本到图像模型及其后续作品在学术界和行业中都具有很大的影响。编辑真实图像时,用户通常希望对不同元素具有直观而精确的控制(即对象)组成图像,并不断地操纵它们。我们可以根据图像中的单个观察的控制级别对现有的图像编辑方法进行分类。一条工作涉及使用文本提示来操纵图像[2,15,24,27]。由于很难与文本同时描述多个对象的形状和外观,因此在对象级别上对细粒度控制的能力有限。同时,迅速的工程使操纵任务乏味且耗时。另一项工作线使用低级调理信号,例如Hu等人。[18],Patashnik等。[34],Zeng等。[58],草图[50],图像[5,47,54]编辑图像。但是,其中大多数作品要么属于迅速的工程陷阱,要么无法独立操纵多个对象。与以前的作品不同,我们的目标是独立控制组成图像的多个对象的正确条件,即对象级编辑。我们表明,我们可以在对象级编辑框架下制定各种图像编辑任务,从而实现全面的编辑功能。
确定可加强野生动物走廊的位置,以帮助为物种在气温升高时迁徙和向北迁移创造场所并保护这些地区。大自然保护协会的弹性土地制图工具是识别弹性和连通网络的良好资源。PB、CC 和 PD
量子计算已成为一个新兴领域,可能彻底改变信息处理和计算能力的格局,尽管物理上构建量子硬件已被证明是困难的,而且当前嘈杂中型量子 (NISQ) 时代的量子计算机容易出错且其包含的量子比特数量有限。量子机器学习是量子算法研究中的一个子领域,它对 NISQ 时代具有潜力,近年来其活动日益增多,研究人员将传统机器学习的方法应用于量子计算算法,并探索两者之间的相互作用。这篇硕士论文研究了量子计算机的特征选择和自动编码算法。我们对现有技术的回顾使我们专注于解决三个子问题:A) 量子退火器上的嵌入式特征选择,B) 短深度量子自动编码器电路,以及 C) 量子分类器电路的嵌入式压缩特征表示。对于问题 A,我们通过将岭回归转换为量子退火器固有的二次无约束二元优化 (QUBO) 问题形式并在模拟后端对其进行求解来演示一个工作示例。对于问题 B,我们开发了一种新型量子卷积自动编码器架构,并成功运行模拟实验来研究其性能。对于问题 C,我们根据现有技术的理论考虑选择了一种分类器量子电路设计,并与相同分类任务的经典基准方法并行进行实验研究,然后展示一种将压缩特征表示嵌入到该量子电路中的方法。
大部分社区参与发生在2019年,估计有77,000人在内,包括针对拉丁裔和亚洲社区以及地区青年的有针对性的宣传。该计划在2020年初进行,当时Covid-19的大流行命中率降低了计划,以允许优先考虑其他即时需求。此暂停提供了时间,以重新考虑住房,就业和所有社区绿色空间的需求。这种重新考虑包括与城市内的每家业务联系,总共2800多,以确定它们的直接和长期需求。还开发了一个会议式的会议,以允许居民举办小型家庭聚会,以在遵守COVID-19方案的同时提供计划的意见。
CTDOT 支持立法,允许市政当局在市政道路上设定最低 25 英里/小时的速度限制。大多数市政当局对自己道路的状况有深入的了解。这些条件包括交通类型和交通量、交通速度、相邻土地用途、行人交通水平以及机动车和行人之间发生冲突的可能性。允许市政当局自行设定速度限制将使他们能够仔细调整本地速度限制以适合当地情况的水平。如果工程研究表明较低的限制是合理的,市政当局可以设定低于 25 英里/小时的速度限制。