近几十年来,印度城市地区的人口增长了前所未有的人口增长。根据2011年人口普查,该国的城市人口总数约为38千万,占总人口的31%。到2050年,印度将近50%的城市(UN-HABITAT,2017年)。估计表明,在2018年至2050年之间,将增加约41.6亿人的城市居民(2018年联合国报告)。根据2011年的人口普查,印度的内部移民人数(州际和国家内部)的数量为45.36亿,占该国人口的37%。根据统计和计划实施部在2022年6月发布的报告中,城市地区的迁移率为34.9%。
含义,自然和范围 - 有效口头交流的原则 - 有效语音的技术 - 口头交流的媒体(面对面 - 面向 - 脸对话 - 电视会议 - 新闻发布会 - 示范 - 无线电记录 - 录音 - 录音 - 录音 - 谣言 - 谣言 - 示威与戏剧化 - 戏剧性 - 戏剧性 - 公共地址系统 - 公共地址系统 - 葡萄藤讨论 - 小组讨论 - 口头报告 - 口头电视电视)。聆听的艺术 - 良好聆听的原则。
(2)算术逻辑单元(A.L.U): - 该单元执行所有基本的算术操作,例如加法,减法,乘法,除法,以及逻辑操作,例如数字的比较等。ALU负责在处理操作过程中实际执行指令。存储在内存单元中的数据和指令在需要时转移到ALU中进行处理,并在处理结束时转移回存储器。处理完成后,将最终结果存储在发送到输出单元之前的内存中。alu还组成了许多称为寄存器的小型存储位置。此寄存器的容量很小,并且包含接下来要执行的数据和说明。
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
摘要:桥梁损坏检测对于确保桥梁结构的安全性和完整性至关重要。传统的损伤检测方法通常依赖于手动检查或基于传感器的测量结果,这可能是耗时且昂贵的。近年来,计算机视觉技术在桥梁位移测量和损伤检测中显示了有希望。这项研究的目的是从基于计算机视觉的方法测量的位移中提取可靠的特征,这些方法对结构条件变化敏感,同时对操作条件的变化有牢固的变化。特别是,本研究论文使用基于基于计算机视觉的位移测量的横向影响比(DTIR)定义的指标提出了一种新颖的桥梁损伤检测方法。所提出的方法利用计算机视觉算法在移动负载下提取桥梁的位移响应。DTIR指示器定义为在两个相邻梁之间的车辆诱导的桥梁准静态位移比,被提取为对损伤敏感的特征。理论推导证明,DTIR指标仅与车辆在甲板上的结构状况和横向位置有关,而与车辆重量和速度的变化无关。为了验证所提出的方法的有效性,在具有不同结构条件的多束梁桥上进行了一系列驱动实验。结果证明了所提出的方法准确检测结构损伤的发生和可能位置的能力。此外,本文讨论了用于桥梁损坏检测的DTIR指标的优点和局限性,以及如何将所提出的方法推广到具有两个以上的交通车道的桥梁。总而言之,提出的方法为在操作条件下的桥梁提供低成本,易于部署和可扩展的健康监控解决方案提供了有希望的解决方案。
• 理解计算机体系结构的高级硬件和软件问题 • 理解多处理器体系结构和连接机制 • 理解多处理器内存管理 模块 I:(10 小时)微处理器和微控制器、RISC 和 CISC 体系结构、并行性、流水线基础、算术和指令流水线、流水线风险、超标量体系结构、超级流水线体系结构、VLIW 体系结构、SPARC 和 ARM 处理器。 模块 II:(10 小时)基本多处理器架构:Flynn 分类、UMA、NUMA、分布式内存架构、阵列处理器、矢量处理器。 模块 III:(10 小时)互连网络:静态网络、网络拓扑、动态网络、云计算。 模块 IV(10 小时)内存技术:缓存、缓存内存映射策略、缓存更新方案、虚拟内存、页面替换技术、I/O 子系统。 结果
该部门已努力改善代表性不足的群体的参与。在过去的七年中,UT Dallas的Grace演讲系列节目介绍了来自行业和学术界的大量鼓舞人心的女性技术社区成员。部门和UT Dallas ACM学生章节主持了德克萨斯州最大的黑客马拉松之一,其第9次迭代在22年秋季,大约有1000名参与者,并且特别关注了计算机中的初学者和代表性不足的群体。该部门还帮助推出了专门为妇女和代表性不足的学生组织的黑客马拉松。第一个Wehack实际上是在2020年举行的,然后在2022年亲自举行,并在2023年春季再次举行。该部门还为180多名中学和高中学生举行了面对面的和在线夏令营,与教授在研究项目中合作。CS部门自2013年以来一直在为K-12学生组织夏季编码营,每年约有1000名中/高中学生和500名小学生在学校休息期间暴露于计算机及其欢乐(https://utdallas.edu/k12)。此外,我们还组织了网络安全方面的妇女事件(自2015年以来)和数据科学领域的妇女(自2018年以来)。
综合课程:本课程让学生详细了解人工智能和机器人技术。人工智能是日常技术的核心,了解人工智能的应用是解决许多当前和未来现实问题的关键。实践学习:与人工智能和机器人技术相关的实时项目有助于学生掌握概念,并为学生提供以概念为导向的课程。独家招聘机会:这个为期 4 年的学位课程将有助于打造一批行业准备就绪的学生,并可进入顶级跨国公司担任大数据工程师、商业智能开发人员、数据科学家、机器学习工程师、研究科学家、人工智能数据分析师、人工智能工程师等职位。
摘要 — 随着光通信的覆盖范围不断缩小,光子学正从机架到机架数据通信链路转向需要不同架构的厘米级计算机内应用 (computercom)。集成光学微环谐振器 (MRR) 正成为满足更严格的面积和效率要求的有吸引力的选择:它们通过波分复用 (WDM) 和高带宽密度提供缩放。在本文中,我们介绍了在 45 nm CMOS 中单片集成的用于 computercom 的紧凑型电光发射 (TX) 和接收 (RX) 宏。它们与 MRR 调制器和光电探测器一起工作,并包括所有必要的电子器件和光学器件,以实现片上数据源和接收器之间的光学链路。通过感测驱动电子器件中的光学设备的偏置电流而不是使用外部工作点感测光学器件,实现了最紧凑的热稳定性实现。使用场效应晶体管作为加热元件(在单片集成平台中是可能的)可进一步减少热控制所需的面积和功率。TX 宏的工作数据速率高达 16 Gb/s,消光比 (ER) 为 5.5 dB,插入损耗 (IL) 为 2.4 dB。RX 宏在 12 Gb/s 时灵敏度为 71 µ A pp,BER ≤ 10 − 10。用宏构建的芯片内链路在 10 Gb/s 时实现 ≤ 2.35 pJ/b 的电气效率和 BER ≤ 10 − 10。两个宏都在 0.0073 mm 2 内实现,每个宏的带宽密度为 1.4 Tb/s/mm 2。
1. 一开始旅行者会同时占据多个坐标(量子叠加现象) 2. 随着退火的进行,位于任意给定坐标的概率会平稳变化,在深谷坐标附近概率会增大 3. 量子隧穿让旅行者可以穿过山丘,而不是被迫爬山,从而减少被困在非全局最小值的山谷中的可能性 4. 量子纠缠进一步改善了结果,让旅行者能够发现通往深谷的坐标之间的关联
