简介:Centella Asiatica(CEA)是一种多年生的多年生爬虫,生长在属于Umbelliferae家族的潮湿土壤中。Centella Asiatica在阿育吠陀医学中用作脑补品,以增强神经功能,学习和记忆。这与正常动物的树突状树皮化的改善相关。但没有报道保护神经元免受压力诱导的神经变性的CEA叶提取物。因此,在本研究中,首先研究了CEA叶提取物对海马CA3神经元在约束应力小鼠中的神经保护作用,然后研究了应激和应激 + CEA提取物治疗的小鼠的康复作用。材料和方法:实验I:三个月大的白化病小鼠分为四组。组(i)是正常对照,第(ii)组为盐水对照,组(iii)是应力组,组(IV)是应力 + CEA处理组。组(III)小鼠在金属丝网限制器中胁迫6小时,持续6周。组(IV)小鼠也像组(III)一样受到压力,但在整个压力期内,它们接受了口服CEA叶子提取物。6周后,去除大脑,剖析海马并加工以进行高尔基体染色。海马神经元。使用sholl的同心圆方法来量化树突。实验II-康复实验 - 以与上述相同的方式进行,然后在最后一次提取物后的正常实验室条件下进行30天的康复。结果:即使在康复后30天后,在实验I和实验I II中,在实验I和实验II中,海马CA3神经元(III)中海马CA3神经元中的树突状刺,树突分支点和树突相交的数量显着减少。然而,在实验I和30天的康复后,受到约束应力的组(IV)显着增加,并用CEA叶子提取(实验II)。结论:CEA保护了海马CA3神经元免受应力诱导的神经变性的影响。CEA叶提取物在海马CA3神经元的树突状形态上永久变化(实验II)..
Pfeifenberger,《21 世纪输电规划:效益量化和成本分配》,为联邦-州电力传输联合工作组 NARUC 成员准备,2022 年 1 月 19 日。 Pfeifenberger、Spokas、Hagerty、Tsoukalis,《改进区域间输电规划的路线图》,2021 年 11 月 30 日。Pfeifenberger,《输电——伟大的推动者:认识到输电规划的多重好处》,ESIG,2021 年 10 月 28 日。Pfeifenberger 等人,《21 世纪的输电规划:提高价值和降低成本的行之有效的实践》,Brattle-Grid Strategies,2021 年 10 月。Pfeifenberger,《海上风力发电的输电选项》,NYSERDA 网络研讨会,2021 年 5 月 12 日。Pfeifenberger,《输电规划和成本效益分析》,向 FERC 员工的演示,2021 年 4 月 29 日。Pfeifenberger 等人,《纽约电网研究初步报告》,为 NYPSC 准备,2021 年 1 月 19 日。Pfeifenberger,“输电成本分配:原则、方法和建议”,为 OMS 准备,2020 年 11 月 16 日。Pfeifenberger、Ruiz、Van Horn,“通过输电系统实现不确定可再生能源发电多样化的价值”,BU-ISE,2020 年 10 月 14 日。Pfeifenberger、Newell、Graf 和 Spokas,“海上风电输电:纽约选项分析”,为 Anbaric 准备,2020 年 8 月。Pfeifenberger、Newell 和 Graf,“新英格兰的海上输电:更完善的电网规划的好处”,为 Anbaric 准备,2020 年 5 月。Tsuchida 和 Ruiz,“利用先进技术进行输电运行创新”,T&D World,2019 年 12 月 19 日。Pfeifenberger,“电力输电竞争带来的成本节约”,Power Markets Today 网络研讨会,2019 年 12 月 11 日。 Pfeifenberger,“改进输电规划:优势、风险和成本分配”,MGA-OMS 第九届年度输电峰会,2019 年 11 月 6 日。Chang、Pfeifenberger、Sheilendranath、Hagerty、Levin 和 Jiang,“电力输电竞争带来的成本节约:迄今为止的经验和增加客户价值的潜力”,2019 年 4 月。“对 Concentric Energy Advisors 关于竞争性输电报告的回应”,2019 年 8 月。Ruiz,“输电拓扑优化:在运营、市场和规划决策中的应用”,2019 年 5 月。Chang 和 Pfeifenberger,“精心规划的电力输电可为客户节省成本:改进的输电规划是向碳约束未来过渡的关键”,WIRES 和 The Brattle Group,2016 年 6 月。Newell 等人。 “纽约交流输电升级方案成本效益分析”,代表 NYISO 和 DPS 员工,2015 年 9 月 15 日。Pfeifenberger、Chang 和 Sheilendranath,“迈向更有效的输电规划:解决灵活性不足的电网的成本和风险”,WIRES 和 The Brattle Group,2015 年 4 月。Chang、Pfeifenberger、Hagerty,“电力输电的益处:识别和分析投资价值”,代表 WIRES,2013 年 7 月。Chang、Pfeifenberger、Newell、Tsuchida、Hagerty,“关于加强 ERCOT 长期输电规划流程的建议”,2013 年 10 月。Pfeifenberger 和 Hou,“接缝成本分配:支持跨区域输电规划的灵活框架”,代表 SPP,2012 年 4 月。Pfeifenberger、Hou,“美国和加拿大输电基础设施投资的就业和经济效益”,代表 WIRES,2011 年 5 月。
THE SCHIRN KUNSTHALLE PRESENTS THE MOST COMPREHENSIVE EXHIBITION OF CARSTEN NICOLAI TO DATE CARSTEN NICOLAI ANTI REFLEX 20 January – 28 March 2005 Press preview: Wednesday, 19 January 2005, 11.00 a.m. Carsten Nicolai is presently considered to be one of the most important representatives of a generation of artists who are purposefully exploring the points of intersection between art, nature, and science.作为一个人的跨境视觉艺术家,研究人员,音乐家和制作人,尼古拉(Nicolai)试图克服人类感知中的感官之间的分裂,并有可能通过听力和触摸和触摸体验诸如声音和光线或电磁场的频率,例如声音和光线或电磁场的频率。他的装置散发出极简主义的美学,以其优雅,简单和对技术的重视吸引了游客。在他参加了重要的国际展览之后,例如Kassel Docucta和Wenice双年展,Schirn提出了首次重大调查,1965年出生于Chemnitz的艺术家将制作一系列新作品。Max Hollein,展览的策展人:“在他的作品中,Carsten Nicolai将实验室实验的科学分析和方法与直观搜索他在艺术家作品中所依赖的新语言进行直观搜索。他利用了复杂的物理过程,并将其转移到可以体验和理解的视觉和声学信号中。”卡斯滕·尼古拉(Carsten Nicolai)对他对科学的态度:“我喜欢在非常精确的条件下工作,在这方面,科学研究和艺术过程或多或少是相同的。由类似实验产生的刚刚遵循普遍逻辑的人像机器一样行事。只有那些违反这些法律并做一些意想不到的新鲜地面的人。许多著名的科学发明偶然出现了。新发现通常是从意想不到的时刻出现的。”该展览是由Kulturstiftung derLänder和Merck Kgaa赞助的Schott AG和EAS GmbH授予了其他支持。声学和视觉的共存是Carsten Nicolai作品中的一个经常性主题。在现代声学科学的创始人恩斯特·克拉德尼(Ernst Chladni,1756– 1827年)的传统中,尼古拉旨在将不同的感官观念联系起来。在可重复的实验排列中,液体是通过不同频率的声音信号来动画的,例如,在同心圆,相遇和连接的情况下会产生波浪,从而产生振动结和干扰模式。尼古拉(Nicolai)部分大空间装置的视觉印象将声音体验转化为频率的肖像。
Pfeifenberger,《纽约州和区域海上风电输电规划》,NYSERDA 海上风电网络研讨会,2022 年 3 月 30 日。Pfeifenberger,《跨区域输电的好处:21 世纪电网规划》,美国能源部国家输电规划研究网络研讨会,2022 年 3 月 15 日。Pfeifenberger,《21 世纪输电规划:效益量化和成本分配》,为联邦-州电力输电联合工作组 NARUC 成员准备,2022 年 1 月 19 日。Pfeifenberger、Spokas、Hagerty、Tsoukalis,《改进区域间输电规划的路线图》,2021 年 11 月 30 日。Pfeifenberger、Tsoukalis、Newell,“保留为纽约创建网状海上电网选项的效益和成本”,与西门子和 Hatch 一起为 NYSERDA 准备,2021 年 11 月9,2022 年。Pfeifenberger,《输电——伟大的推动者:认识到输电规划的多重好处》,ESIG,2021 年 10 月 28 日。Pfeifenberger 等人,《21 世纪的输电规划:提高价值和降低成本的行之有效的实践》,Brattle-Grid Strategies,2021 年 10 月。Pfeifenberger,《海上风电的输电选项》,NYSERDA 网络研讨会,2021 年 5 月 12 日。Pfeifenberger,《输电规划和成本效益分析》,向 FERC 员工的演示,2021 年 4 月 29 日。Pfeifenberger 等人,《纽约电网研究初步报告》,为 NYPSC 准备,2021 年 1 月 19 日。Pfeifenberger、Ruiz、Van Horn,“通过输电系统实现不确定可再生能源发电多样化的价值”,BU-ISE,2021 年 10 月14,2020。Pfeifenberger、Newell、Graf 和 Spokas,“海上风电输电:纽约选项分析”,为 Anbaric 准备,2020 年 8 月。Pfeifenberger、Newell 和 Graf,“新英格兰的海上输电:更完善的电网规划带来的好处”,为 Anbaric 准备,2020 年 5 月。Tsuchida 和 Ruiz,“利用先进技术进行输电运行创新”,T&D World,2019 年 12 月 19 日。Pfeifenberger,“电力输电竞争带来的成本节约”,Power Markets Today 网络研讨会,2019 年 12 月 11 日。Chang、Pfeifenberger、Sheilendranath、Hagerty、Levin 和 Jiang,“电力输电竞争带来的成本节约:迄今为止的经验和增加客户价值的潜力”,2019 年 4 月。“对 Concentric Energy Advisors 关于竞争性输电报告的回应”,2019 年 8 月。Ruiz,“输电拓扑优化:在运营、市场和规划决策中的应用”,2019 年 5 月。Chang 和 Pfeifenberger,“精心规划的电力输电节省客户成本:改进的输电规划是向碳约束未来过渡的关键”,WIRES 和 Brattle Group,2016 年 6 月。Newell 等人“纽约交流输电升级方案的成本效益分析”,代表 NYISO 和 DPS 员工,2015 年 9 月 15 日。Pfeifenberger、Chang 和 Sheilendranath,“ 迈向更有效的输电规划:解决不够灵活的电网的成本和风险 ”,WIRES 和 Brattle Group,2015 年 4 月。Chang, Pfeifenberger, Hagerty,“ 电力输电的益处:识别和分析投资价值 ”,代表 WIRES,2013 年 7 月。Chang, Pfeifenberger, Newell, Tsuchida, Hagerty,“ 关于加强 ERCOT 长期输电规划流程的建议 ”,2013 年 10 月。Pfeifenberger 和 Hou,“ 接缝成本分配:支持跨区域输电规划的灵活框架 ”,代表 SPP,2012 年 4 月。Pfeifenberger, Hou,“ 美国和加拿大输电基础设施投资的就业和经济效益 ”,代表 WIRES,2011 年 5 月。
引言Duchenne肌营养不良症(DMD)是由编码细胞内蛋白质肌营养不良蛋白的基因突变引起的,是一种严重的X染色体染色体连接疾病,其特征是渐进的肌肉无力和变性。除了特征良好的骨骼肌病理学外,DMD还与相关的心脏并发症有关(Shirokova和Niggli,2013; Spurney,2011)。在其中,心律不齐和扩张的心肌病的发展极大地有助于与该疾病伴随的发病率和死亡率。在DMD背景下,导致心脏并发症的机制在很大程度上未知,这增加了对DMD动物模型的基础研究工作的需求。在使用的DMD动物模型中(McGreevy等,2015; Wells,2018),MDX小鼠是最著名的,最广泛使用的。它在鼠DMD基因的外显子23中具有过早的停止突变,因此未能翻译功能性全长肌营养不良蛋白(Sicinski等,1989)。尽管MDX小鼠是DMD的有用的遗传和生化模型,但仅部分模仿了人类疾病。因此,与DMD患者相比,MDX小鼠的寿命略有缩短,并且没有显示出明显的肌肉营养不良症状(Grady等,1997; Gutpell等,2015)。此外,MDX小鼠的心脏异常仅出现晚期(Quinlan等,2004),与DMD患者发生的心肌病相比是温和的(Grady等,1997; Janssen等,2005)。这质疑该动物模型研究心脏病表型的适用性。2014年,Larcher及其同事使用转录激活剂样效应子核酸酶靶向DMD基因的外显子23的发展肌营养不良蛋白缺陷型大鼠的发展(Larcher等,2014)。在这些DMD MDX大鼠中,心肌受坏死和纤维化的影响,并显示出进行性扩张性心肌病的迹象。超声心动图显示出明显的同心重塑和舒张功能的改变。基于这些发现,作者认为,DMD MDX大鼠中心脏病表型在DMD患者中观察到的,并且该动物模型可能适用于临床前DMD研究(Larcher等,2014)。该研究的弱点 - 实际关注骨骼肌肉 - 是DMD MDX大鼠的心脏病表型没有详细表征。例如,超声心动图仅对3个月大但不老的大鼠进行。此外,作者(Larcher等人,2014年)没有研究可能发生的血管并发症,例如增强的动脉僵硬度(Ryan等,2017)和内皮细胞(EC)功能障碍(Miike等,1987),这也可能有助于DMD患者的心脏病概念型的发展。最后,在细胞水平上的功能研究(即dmd MDX心肌细胞)尚未进行。考虑到缺乏证据,本研究的目的是提供处理编辑器的详细表征:Monica J.正义获得了2020年10月8日; 2020年12月23日接受
AC 交流电 ACD 交流断路器 AC-FT 英亩英尺 ADJ 可调 AHJ 具有管辖权的机构 ALT 交流电 AL 铝 APPROX 近似 AUX 辅助 AWG 美国线规 AZ 方位角 BESS 建筑储能系统 BOL 使用寿命开始 BIL 基本绝缘水平 BLDG 建筑 BOC 电池背面 C 摄氏度 C/L 中心线 CB 组合箱 CLR 清晰 CN 同心中性 CONT 连续 CONFIG 配置 CT 电流变压器 CU 铜 DAS 数据采集系统 DC 直流 DIA 直径 DISC 断路器 DWG 图纸 (E) 现有 EGC设备接地导体 EMT 电气金属管 EOL 寿命终止 EOR 记录工程师 EQ 相等 F 华氏度 FCI 故障电流指示器 FO 光纤 FT 固定倾斜 GALV 镀锌 GEC 接地电极导体 GFDI 接地故障检测器中断器 GHI 整体水平辐照度 GOAB 联动空气断路器 GND 接地 GSU 发电机升压变压器 HV 高压 ID 内径 INV 逆变器 IMC 中间金属导管 IMP 阻抗 ISU 逆变器升压变压器 JB 接线盒 kV 千伏,千伏kW 千瓦,千瓦 LBOR 负荷断路器 油浸旋转 LFNC 液密柔性非金属导管 LV 低压 MCB 主断路器 MCOV 最大连续工作电压 MIN 最小 MET 气象站 MOV 金属氧化物压敏电阻 MV 中压 MVA 兆伏安,兆伏安 MW 兆瓦,兆瓦 NEC 国家电气规范 NEG 负极 NTRL 中性线 OAE 或认可相等 OC 中心 OCPD 过流保护装置 OCTE 户外核心电信外壳 OD 外径 OH 架空OTDR 光时域反射仪 PCS 功率转换系统 PH/P 相位 POA 阵列平面 POCC 公共耦合点 POI 互连点 POS 正极 PRCLF 部分范围电流限制 PT 电压变压器 PV 光伏 PVC 聚氯乙烯 RFI 信息请求 RMC 刚性金属导管 SAT 单轴跟踪 SCADA 监控和数据采集 SCB 串式组合器箱 SCH 时间表 SF 平方英尺/英尺 SIM 类似 STC 标准测试条件 TBD 待定 TOF 基础顶部 TW 测试井 TYP 典型 UGPB 地下拉力箱体 (UON) 除非另有说明 UPS 不间断电源 V 伏,伏特 VA 伏安,伏安 VAC 伏特交流电 VDC 伏特直流电 VIF 现场验证 WP 防风雨 WS 气象站 XFMR 变压器
微量金属对所有生物体的生长都至关重要。了解这些微量金属在新陈代谢中的作用对于维持生物体的稳定状态至关重要。此外,由于各种污染,人类还面临着各种有害重金属的不断接触。总的来说,这些方面导致了分析技术领域的研究和发展,这些技术可以帮助确定我们细胞中这些微量金属的含量。电感耦合等离子体质谱 (ICP-MS) 是一种分析技术,用于分析各种样品(包括生物样品)中的元素组成。近年来,单细胞 ICP-MS (scICP-MS) 技术已广泛应用于医学和生物领域,用于分析细菌、真菌、微生物、植物和哺乳动物中的单个活细胞。scICP-MS 的样品引入系统由传统的气动雾化器和总消耗喷雾室组成。气动雾化器将样品(细胞悬浮液)液体转化为雾气。虽然使用雾化器的传统 scICP-MS 分析对于酵母细胞的传输效率达到 10%,但由于哺乳动物细胞的脆弱性,它无法用于哺乳动物细胞。众所周知,化学固定可以增强哺乳动物细胞的强度,但它会极大地影响元素含量,导致分析不准确。因此,需要开发一种不会对哺乳动物细胞造成任何损害的样品引入系统。为此,来自日本的一组研究人员现已证明微滴发生器 (µDG) 作为样品引入系统的潜力,可用于高效定量分析哺乳动物细胞的元素。该团队由日本千叶大学药学研究生院的助理教授 Yu-ki Tanaka 以及 Hinano Katayama 女士、Risako Iida 女士和 Yasumitsu Ogra 教授组成,他们将 µDG 引入 ICP-MS 的样品引入系统,表明该系统能够准确地进行元素分析。他们的研究成果于 2024 年 12 月 2 日发表在《分析原子光谱杂志》第 40 卷上。Tanaka 博士进一步阐述道:“到目前为止,scICP-MS 已应用于细菌、真菌、植物细胞和红细胞。我们将 scICP-MS 技术的潜力扩展到哺乳动物培养细胞,开发了一种用于测量哺乳动物培养细胞中元素含量的强大分析技术。”在研究中,研究人员使用了两种样品引入系统进行颗粒和细胞样品分析。第一个是传统系统,包括同心玻璃雾化器和总消耗喷雾室。另一个系统包括插入制造的 T 形玻璃管道中的 µDG,玻璃管的一端连接全消耗雾化室,另一端连接ICP炬管。研究人员发现,使用µDG后,细胞运输效率大幅提高。此外,他们还估算了K562细胞(也称为人类慢性粒细胞白血病K562细胞)中的镁、铁、磷、硫和锌,发现µDG保持了细胞的原始结构,而传统系统通常会改变细胞的结构。因此,它非常适合单细胞元素分析,因为它不会影响细胞的结构,从而可以高效地检测细胞。“我们的
摘要 有效地将人工智能 (AI) 融入教育对于充分利用其在教学过程中的优势至关重要。本文建议将卡林顿的教学法之轮改编为人工智能教学法之轮,旨在为将人工智能融入教育提供教学框架。所采用的研究方法基于系统评价和映射,结合术语共现分析的文献计量研究,以确定科学上支持改编该教学法之轮必要性的相关主题集群。新的教学法之轮针对获得的四个集群(整合人工智能以加强教育、在教学过程中使用教育技术、教学设计和创新以及可持续和道德教育),并呈现同心圆,解释如何逐步将人工智能融入不同的认知水平(布鲁姆分类法)和技术集成(SAMR 模型),这两者都适用于人工智能。教学法之轮包括工具和应用程序的示例以说明实施过程。此外,还包括一个反思性元认知层面,涉及使用人工智能的道德和责任。总之,适应人工智能的轮子是提高教育有效性和效率的可行选择,前提是教育者参与教学过程的规划和执行,以确保其成功。值得一提的是,由于新应用不断涌现,保持轮子更新的重要性。关键词:人工智能;颠覆性技术;卡林顿之轮;布鲁姆分类法;SAMR 模型。总结人工智能 (IA) 有效地融入教育是促进其在学习过程中受益的必要条件。本文提出了卡灵顿教育教学法的调整和 IA 教学法的调整,最终将 IA 与教育结合起来。调查方法采用了修订和映射系统的方法,并结合了对识别集群技术的共同发生的文献计量研究的研究方法,以解决鲁埃达适应所需的科学问题。 La nueva rueda atiende a los cuatro cluster obtenidos (Integración de la IA para mejorar la educación, Uso de tecnologías educativa en el proceso de enseñanza y aprendizaje, Diseño e innovación pedagógica y Educación Sostenible y Ética) y Presenta anillos详细阐述了 IA 的渐进过程,包括不同的认知(Taxonomia de Bloom)和技术集成(Modelo SAMR)以及 IA 的适应、应用和应用。 Además 包括关于 IA 用途的反射-元认知和责任。结论是,根据指导员参与计划和实施的条件,IA 提出了一项可行的选项,以提高教育的效率和效率。需要注意的是,实际应用中的实际情况非常重要,新应用的持续性差异也很重要。
最近在光学和光子学方面取得了突破,导致了非重点设备和材料的显着进步。研究人员已经证明了实现光学隔离的各种方法,包括磁光隔离器,非逆地相位变速器和声学系统。研究表明,可以使用IIII-V-niobate放大器和激光器(De Beeck等,2021)以及氮化硅平台(Yan等,2020)来实现综合波导隔离器。这些设备可实现有效的光学通信和传感应用。此外,研究人员还探索了在硅光子系统中使用微量的,这可以导致紧凑和集成的光子溶液(Shu等,2022; Shen等,2020)。其他研究的重点是开发针对平面波导隔离器的非重粒子材料和设计(Srinivasan&Stadler,2018)。此外,研究人员还研究了在不使用磁光材料的情况下实现光学分离的各种方法。这些方法包括合成磁力和储层工程(Fang等,2017),电动驱动的Acousto-Optics(Kittlaus等,2021)以及声子介导的光子自动镇分布(Sohn等,2021)。总体而言,这些非重点设备和材料中的这些进展对用于光学通信,传感和其他应用的紧凑,集成光子系统的开发具有重要意义。最近的一项研究证明了用于基于芯片的激光雷达技术的非重点脉冲路由器的发展[1]。这项创新基于光学隔离器和循环器的先前研究,这些创新已被证明是通过参数放大[2]和KERR效应的固有非交流性[3]来实现的。其他研究探索了微孔子来创建隔离器和循环器[4],以及在对称微腔中的可重构对称性激光[5]。研究人员还研究了用于频率梳子产生和低功率启动的高Q氮微孔子[6,7]。已经报道了磷化磷化物非线性光子学的综合凝固膜的发展,以及基于触觉的Kerr非线性综合光子学[8,9]。还研究了高Q硅碳化物微孔子中的光学KERR非线性,以及硅碳化物纳米光子学中的光学参数振荡[10,11]。进一步的研究集中于具有高第二谐波产生效率的定期粘性薄膜硅锂微孔谐振器[12]。单片硅锂光子电路已为Kerr频率梳子的产生和调制开发[13]。研究还研究了由于动态互惠性而引起的非线性光学隔离器的局限性[14],以及非线性谐振器中反传播光的对称破坏[15]。已报道了非线性微孔子中自发性手性的实验证明,以及基于氮化硅和非线性光学硅Hydex的新型CMOS兼容平台[16,17]。研究还探索了稀薄的氮化硅同心微孔子中的分散工程和频率梳子的产生[18]。据报道,探测材料吸收和集成光子材料的光学非线性,以及解决硅微孔谐振器设备的热挑战[19,20]。最后,已经证明了镜子对称的片上频率循环,以及由硅芯片上带光子跃迁引起的电动驱动的非转换的非逆向性[21,22]。使用微孔调制器的光学隔离也已经探索[23]。注意:我在试图维护原始含义和上下文的同时解释了文本。但是,为了清楚起见,可能已经省略或改写了一些次要细节。研究人员刘和团队开发了一种大规模生产高质量氮化硅光子电路的方法,以最低的损失率以最低的损失率实现了出色的性能。在他们最近在《自然传播》中的出版物中详细介绍了这一突破。
