目的:这项研究的目的是分析来自诊断为先天性甲状腺功能减退症(CH)的CAT的甲状腺过氧酶(TPO)基因的不同片段的序列。材料和方法:由于您的流血刺激激素和低T4的血清浓度高,因此被诊断为猫科动物。从具有CH的狗的TPO基因中含有突变的序列的分析允许预测受影响CAT中基因中的突变位点。此外,基于聚合酶链反应测试的设计还可以放大和测序这些基因段。此外,在患者死亡后,进行了死灵病和组织病理学,寻找受影响器官的宏观和微观改变。结果:尸检检查表明甲状腺的心脏同心左心室高奖杯和甲状腺的双侧增大。甲状腺的组织病理学表现出卵泡性发育不全和低胶体产生。gDNA分析允许检测TPO基因中的突变,该突变与位于核苷酸14.627(G/A)中的核苷酸12.542(a> g)中的一个过渡相对应,在核苷酸和核苷酸30.713(g/c)中。结论:由于存在这些多态性,因此怀疑存在一种突变等位基因的单相表达。需要进行更多的研究,以了解杂合中杂合中的作用,以及与CH在CAT中相关的基因突变的作用。另一方面,本研究的数据是开发分子测试的基础,该测试可以快速准确诊断猫中的HC。
有效地将人工智能 (AI) 融入教育对于充分利用其在教学过程中的优势至关重要。本文建议将卡林顿的教学法之轮改编为人工智能教学法之轮,旨在为将人工智能融入教育提供教学框架。所采用的研究方法基于系统回顾和映射,结合术语共现分析的文献计量研究,以确定科学上支持改编该轮子必要性的相关主题集群。新轮子解决了获得的四个集群(整合人工智能以加强教育、在教学过程中使用教育技术、教学设计和创新以及可持续和道德教育),并提出了同心圆,解释如何逐步将人工智能融入不同的认知水平(布鲁姆分类法)和技术整合(SAMR 模型),这两者都适用于人工智能。该轮子包括工具和应用程序的示例来说明实施情况。此外,还包括一个反思元认知水平,涉及使用人工智能的道德和责任。总之,只要教育者参与规划和执行教学过程以确保其成功,适应人工智能的轮子是提高教育效果和效率的可行选择。值得一提的是,由于新应用不断涌现,保持轮子更新的重要性。关键词:人工智能、颠覆性技术、卡林顿轮、布鲁姆分类法、SAMR 模型。
在最近发表的免疫性论文中,XU及其同事表明,通过液态液相分离增强嵌合抗原受体(CAR)聚类,尤其是通过纳入CD3ε,可以改善免疫突触(IS)形成,抗原敏感性,抗原敏感性,和长期的细胞毒性。他们优化的汽车设计(E B6i 28z)模仿基于TCR的关键特征IS,减少了对血液学和实体瘤的疲惫和改善反应。免疫突触(IS)是一种高度专业的界面,在免疫细胞和抗原呈递细胞或靶细胞之间形成。它是T细胞激活,信号传导和效应子功能的关键平台。1经典由T细胞受体(TCR)参与形成,表现出一个特征性的“牛眼”结构,其中包含称为超分子激活簇(SMAC)的同心环。SMAC包括几个组合:1)中央SMAC(CSMAC),富含TCR和相关的信号分子; 2)外围SMAC(PSMAC),包含LFA-1等粘附分子; 3)远端SMAC(DSMAC),它是一个富含肌动蛋白的区域,具有CD45之类的蛋白质。1 CD2是一种重要的共刺激和粘附分子,在PSMAC和DSMAC之间分配,有助于完整性和下游信号传导。2这种复杂的结构确保了精确和持续的T细胞激活。相比之下,嵌合抗原受体(CAR)-T细胞是一种癌症免疫疗法中的革命性工具,形成非经典性是与TCR介导的突触显着不同的结构。4,53 CAR-T细胞突触的特征是混乱,多灶信号簇,缺乏定义的PSMAC以及更快的近端信号传导以及快速溶酶体募集。
[2022年11月18日收到;修订了2023年1月14日; 2023年1月15日接受]摘要:衰老过程伴随着心脏系统的持续下降,破坏了细胞,器官和系统的体内稳态调节。衰老会增加心血管疾病的患病率,从而增加心力衰竭和死亡率。了解心脏衰老过程一旦我们可以设计策略来防止与年龄相关的心脏事件并提高老年人的生活质量,这至关重要。在本综述中,我们概述了心脏老化过程的重点是以下主题:心脏结构和功能修饰;衰老中心脏功能障碍的细胞机制;心脏病发展中的遗传学和表观遗传学;以及衰老的心脏和对锻炼的反应。关键词:心血管系统,衰老,纤维化,淀粉样变性,线粒体功能障碍遗传学,表观遗传学,练习1。依赖年龄的心脏结构和功能修饰1.1心室结构修饰最观察到的伴随衰老的结构心脏修饰主要影响左心室(LV)壁[1,2]。即使没有高血压或其他导致心脏增强后负荷的原因,在老化过程中,LV壁[3-5]的衰老过程中,也会导致同心肥大(由LV壁的上升而定义,并减少腔室大小)(图。1)。衰老过程也会影响脑室室内隔膜的大小,这是LV流出阻塞的原因,导致进一步增强LV后负载。血压已被描述为随着年龄的增长而增加,导致LV肥大。然而,在LV的起源中不能丢弃神经激素和其他分子因子
为了应对不断增长的能源需求、日益加剧的气候变化问题以及日益严重的环境恶化,可再生能源的引入已在各个行业和地区获得关注。与此同时,科学家和工程师已经认识到热回收系统在减少能源消耗方面的潜力,从而进一步研究其实际应用。本研究引入了一种创新设计,将涡流发生器集成到同心管热交换器中,用于从为 48 间住宿提供服务的多排水水系统中回收热量。通过评估该设计与各种可再生能源结合使用时的经济和环境影响来评估其可持续性。具体而言,目标是量化在拥有 48 间住宿的建筑的多排水应用中实施此设计所产生的成本和环境节约。数值研究阐明了流速变化对传热、总传热和热增强因子的影响。分析了四种可再生能源输入 - 太阳能、风能、生物质能和水力发电 - 以及一个存储系统(抽水蓄能)。研究表明,设计实施可使冷水温度升高 3.5 至 7.5 ◦ C。此外,太阳能、风能、生物质能、水力发电和抽水蓄能的每日环境节约估计分别为 0.783 欧元、0.339 欧元、0.141 欧元、0.027 欧元和 1.356 欧元。相反,每种相应能源的每日经济节约计算为 3.62 欧元、2.49 欧元、5.05 欧元、3.62 欧元和 6.70 欧元。这项研究强调了所提出的设计在通过环境保护和经济效率促进可持续发展方面的可行性。
本研究旨在评估使用最新一代等速测力计进行的躯干肌肉力量测试的有效性和重测信度。在 15 名健康受试者中测量了躯干屈肌和伸肌的离心、等长和向心峰值扭矩。肌肉横截面积 (CSA) 和表面肌电图 (EMG) 活动分别与竖脊肌和腹直肌的峰值扭矩和亚最大等长扭矩相关。在测试和重测期间确定了峰值扭矩测量的可靠性。对于所有收缩类型,肌肉 CSA 与峰值扭矩之间始终存在显著相关性(r = 0.74 � 0.85;P < 0.001),对于伸肌和屈肌,EMG 活动与亚最大等长扭矩之间也存在显著相关性(r P 0.99;P < 0.05)。组内相关系数在 0.87 和 0.95 之间,所有收缩模式的标准测量误差均低于 9%。测试和重测之间的峰值扭矩平均差异范围为 � 3.7% 至 3.7%,没有显著的平均方向偏差。总体而言,我们的研究结果证实了使用测试的躯干模块进行扭矩测量的有效性。此外,考虑到峰值扭矩测量的出色重测信度,我们得出结论,这款最新一代等速测力计可以放心用于评估躯干肌肉功能,以用于临床或运动目的。� 2014 Elsevier Ltd. 保留所有权利。
硬盘使用圆形扁平磁盘(称为盘片),盘片两面涂有特殊的介质材料,用于以磁性图案的形式存储信息。盘片的安装方法是在中心切一个孔,然后将其堆叠在主轴上。盘片高速旋转,由连接到主轴的特殊主轴电机驱动。特殊的电磁读/写设备(称为磁头)安装在滑块上,用于将信息记录到磁盘上或从磁盘读取信息。滑块安装在臂上,所有这些都机械地连接到单个组件中,并通过称为执行器的设备定位在磁盘表面上。逻辑板控制其他组件的活动并与 PC 的其余部分通信。 磁盘上每个盘片的每个表面都可以容纳数百亿个单独的数据位。为了方便起见,这些被组织成更大的“块”,以便更容易、更快地访问信息。每个盘片有两个磁头,一个在盘片顶部,一个在盘片底部,因此带有三个盘片的硬盘(通常)有六个表面和六个磁头。每个盘片的信息都记录在同心圆中,称为磁道。每个磁道进一步细分为更小的部分,称为扇区,每个扇区包含 512 字节的信息。 由于组件的极端小型化以及硬盘在 PC 中的重要性,整个硬盘必须以高精度制造。磁盘的主要部分与外界空气隔离,以确保没有污染物进入盘片,否则可能会损坏读/写磁头。
摘要:心力衰竭(HF)已成为不断兴趣的主题,因为它在1997年被宣布为新的大流行,因为HF在最近几年的住院治疗呈指数增长。hf是最终的状态,即使没有得到充分治疗,不同病因的所有心脏疾病都会引起。它在全球范围内非常普遍,随着年龄的增长而逐渐增加,在65岁以上的受试者中达到10%。在过去的二十年中,有可能看到保留的射血分数(HFPEF)的心力衰竭的流行率正在增加,而心力衰竭的射血分数(HFREF)正在减少。HFPEF通常以舒张功能受损和增加的填充压力的左心室(LV)的同心重塑进行特征。多年来,一般成年人口中胰岛素抵抗(IR)/高胰岛素血症(HyperINS)的流行率逐渐增加,这主要是由于生活方式的变化,尤其是在发达国家和发展中国家的变化,全球范围在15.5%和46.5%之间。值得注意的是,超过50%的HF患者也具有IR/HYPERINS,而HFPEF患者的百分比甚至更高。在科学文献中,已经很好地强调了,与胰岛素抵抗状况相关的循环胰岛素水平增加,多年来造成了促进性心血管改变,这可能会刺激HFPEF的发展和/或HFPEF恶化。本手稿的目的是审查支持IR/HyperINS和HFPEF之间的病理生理联系的科学文献,以刺激科学界识别与胰岛素抵抗性的高胰岛素血症,作为独立的心血管危险因素,在HF的发展中,它可以改善其在适当的治疗中,并确定其在适当的治疗中,并确定其适当的培训,以改善HF的培训,并在适当的治疗中改善了HF的促进性。进展。
JHR是一种正在CADARACHE CADARACHE施工的新材料测试反应器。其高通量芯包含37个沿同心环的燃料组件,进入铝基质的肺泡。对于反应堆的运行,这些燃料组件中有二十七个在其中心构成了hafnium杆,而其他燃料组件也可以容纳其他燃料组件,而其他燃料组件也可以容纳铍径向反射器,可以容纳实验设备。为了准确预测其操作核心特性,也是其辐照性能,正在开发基于Apollo3®平台的最近开发的方案,该方案正在开发,该方案使用了子组方法来用于空间自屏蔽,特征的2D方法和3D非结构化的符合符合符号的尖塔nararet s n运输求解器。已建立并优化了JHR的2D模型,用于在晶格步骤中计算自屏蔽和凝结的横截面,这要归功于亚组方法和特征方法。根据Tripoli-4®随机参考计算进行基准测试。与以前的Apollo2方案相比,更精致的空间网格给出了更好的裂变率和反应性结果。经典的2步计算使用无限晶格配置的假设,这对于靠近中心的组件是合理的,但对于外围的组件是合理的。因此,考虑到每个组件的周围,正在设置一种新方法。新的3-步骤方案使用SN求解器尖塔,比传统的2步方案获得更好的结果。关键字:Apollo3®,JHR,确定性计算方案,S N方法这种方法将应用于包含实验设备并启用烧毁计算的异质JHR核心配置的3D建模。
我们研究了有限温度和边缘引起的对电荷和电流密度的影响,该电荷位于磁通量螺纹的2D锥形空间上。场算子在圆形边界上受约束,与圆锥形顶点,袋边界条件以及条件在术语前面的相反符号的条件约束。在二维空间中存在两个clifford代数的不相等表示,并为实现这些表示形式的两个字段提供了分析。圆形边界将锥形空间分为两部分,称为内部(I-)和外部(E-)区域。径向电流密度消失。对于一般的化学势情况,在两个区域中,电荷的预期值和方位角电流密度都明确分离。它们是磁通量的周期性功能和奇数功能,在磁通量和化学势的迹象的同时变化下。与文献中先前考虑的费米凝结物的重要差异是,当观测点趋于边界时,平均电荷和当前密度在极限中是有限的。在电子区域中,所有旋转模式都是规则的,总电荷和电流密度是磁通量的连续功能。在I区中,相应的期望值是在磁通量与通量量子之比的半数值下不连续的。这些不连续性来自I区中不规则模式的贡献。2D费米子模型,在奇偶校验和时间反向转换下(在没有磁场的情况下)结合了两个旋转磁场,意识到克利福德代数的不相等表示。讨论了这些模型中的总电荷和当前密度,以针对单独字段的边界条件的不同组合进行讨论。在2D Dirac模型描述的石墨锥中讨论了电子子系统的应用。
