摘要 - 最常见的材料之一是具体的。混凝土由于其高抗压强度以及其他好处,例如防水性,低维护成本,易于成型,成型尺寸和形式,低制造能源消耗等等,因此优于其他建筑材料。某种形式的拉伸加固对于混凝土是必需的。在这项研究中,将石墨烯添加到M30级的混凝土中,以提高其分裂的拉伸强度,抗压强度和抗裂纹时的抵抗力。“高剪切去角质”是混合石墨烯和水的过程的术语。石墨烯和混凝土之间存在明显的差异。用石墨烯折叠的混凝土还降低了“碱 - 硅基反应”。这项研究的目的是使用水泥复合材料来研究石墨烯及其衍生物。在这项工作中采用的石墨烯中的氧化硅官能团被聚合并使与水泥水合物的化学相互作用变得无效。石墨烯的另一种用途是作为抗腐蚀覆盖物。我们正在测试地石墨烯的不同百分比-0.5%,1.0%,1.5%和2.0%的水泥重量 - 在混凝土样品中,尺寸为150 x 150 x 150毫米的立方体,横梁和500 x 100 x 100 mm的横梁。将结果与常规水泥混凝土的结局进行了比较。在添加不同百分比的石墨烯后的7、14和28天后检查了混凝土标本的机械特性。“混凝土的最佳强度”是结果。
NU Way混凝土形式中央,杰斐逊城 @ 3100 South 10 Mile Drive Jefferson City MO 65109 01-FEB-27
s Sakai (Honorary Chair), Japan Late Odd E. Gjørv (Horonorary Chair), Norwegian University of Science and Technology, Norway Nemkumar Banthia (Chair), University of British Columbia, Canada Byun Hwan University, Koreaul Eiffel, France Castro-Borges, Centro de Investigacón y de Estudid Avanzados del IPun Unidad Mérida, Mexico Bernardo Fonseca Tutikian,大学Do Vale Dos Sininos,巴西Paulo Helene,圣保罗大学,圣保罗大学和Phdwen的工程师Yamei Zhang,东南大学,南京,中国Zongjin Li
根据七个通用设计原则,温哥华市的工程服务设计人行道,这些原则着重于使每个人都可以访问空间且易于使用。首先,该设计对具有不同能力的人(公平使用)有用。这很灵活,可以容纳各种偏好和能力(使用灵活性)。设计简单明了,因此无论一个人的体验或技能如何(简单而直观的用途),都很容易理解。它即使在不同的条件下或有感官挑战的人(可感知信息)也可以清楚地传达信息。设计还通过最大程度地减少潜在危害(误差的公差)来降低风险。在不需要太多的身体上(身体上的努力下)的情况下,它很容易使用,并且无论大小或机动性如何(用于接近和使用的大小和空间),它为人们提供了足够的空间,可以使人们舒适地移动和互动。
1 执行摘要 在路面可以行走时立即测量路面轮廓的主要原因是可以立即纠正铺装操作。何时进行补救并不重要。重要的是停止导致平整度问题的任何事情。FAA 咨询通告 (AC 150/5370-10B)《机场建设规范标准》中包括的 P-501 项“波特兰水泥混凝土路面”,称为“P-501”规范,要求使用 16 英尺直尺评估新混凝土路面的平整度。满足 P-501 中的标准后,机场路面将变得平整。但是,使用物理直尺是一个人力密集型过程。因此,实践已经发展到通常使用加州剖面仪来评估机场路面。另外,自动路面剖面仪提供了 16 英尺直尺的模拟,这使得它们在实施 P-501 的平滑度组件时从效率和易用性的角度来看具有吸引力。作为本研究的一部分,对不同类型的路面剖面仪进行了测试,以确定在使用它们代替 P-501 中规定的 16 英尺直尺时的准确性和可靠性。剖面仪的类型包括静态和滚动倾角仪、轻型惯性剖面仪、干湿剖面仪和外部参考剖面仪。经过正确校准和操作后,发现所有测试的设备都能够评估机场路面的平滑度。但是,每种类型都有优点和局限性,其中一些是重要的。加州剖面仪未包含在本次评估中,仅用于相对比较。测量在不同波长下的放大和衰减是该设备的一个潜在问题。此外,剖面仪根据偏离中心的偏差测量平滑度。P-501 中的标准是沿 16 英尺直尺长度测量的偏差。轻型剖面仪速度快、准确,通常可同时测量两条测量线。它们需要空间来加速到最佳速度,然后需要空间来减速,因此在狭窄区域中的使用受到限制。轻型剖面仪无法测量相对于平均海平面 (MSL) 的真实剖面,也无法测量横坡或局部凹陷区域(鸟池)。它们比静态测斜仪快得多。结果表明,使用更大占地面积的轻型剖面仪可以补偿路面纹理,因此更准确地匹配本研究中使用的参考剖面仪。静态倾角仪足够准确,可以测量相对于平均海平面的真实剖面,但它们也非常慢。滚动倾角仪也足够准确,可以测量相对于平均海平面的真实剖面。
混凝土是最常见的建筑材料。混凝土类型丰富,配方取决于特定用途。混凝土的微观结构通常是强烈的异质性,具有水泥,细和粗骨料,充满空气的毛孔和各种增援。混凝土的计算模型通常会大大降低以确保安全性。更精确的模型可以从材料和CO 2排放方面巨大节省。通过3D计算机断层扫描(CT)观察到的原位机械测试,特别是观察到3D的裂纹起始和生长可以帮助改善这些模型。 大规模的CT系统gulliver专用于研究分别为6 m和1 m的现实大型混凝土束和宽度的疲劳动力学。 分析在原位弯曲测试中生成的图像数据需要特别可靠的检测和正确分割薄裂纹。 因此,最近比较了裂纹分割的算法[1],扩展到多尺度裂纹[2,3],适用于纤维增强的混凝土[4,5],甚至是新发明的[6,7]。 对于方法的公平定量比较以及机器学习模型的培训和开发,基于合成裂纹结构的半合成CT图像[8-10]至关重要。 首先,裂纹是作为分数布朗动作的实现[11]。 后来,由于其多功能性,首选由随机伏罗尼叶镶嵌物的小平面形成的最小表面[8]。 在[13,14]中研究了裂纹与混凝土微观结构之间的相互作用。通过3D计算机断层扫描(CT)观察到的原位机械测试,特别是观察到3D的裂纹起始和生长可以帮助改善这些模型。大规模的CT系统gulliver专用于研究分别为6 m和1 m的现实大型混凝土束和宽度的疲劳动力学。分析在原位弯曲测试中生成的图像数据需要特别可靠的检测和正确分割薄裂纹。因此,最近比较了裂纹分割的算法[1],扩展到多尺度裂纹[2,3],适用于纤维增强的混凝土[4,5],甚至是新发明的[6,7]。对于方法的公平定量比较以及机器学习模型的培训和开发,基于合成裂纹结构的半合成CT图像[8-10]至关重要。首先,裂纹是作为分数布朗动作的实现[11]。后来,由于其多功能性,首选由随机伏罗尼叶镶嵌物的小平面形成的最小表面[8]。在[13,14]中研究了裂纹与混凝土微观结构之间的相互作用。这些合成的裂纹结构可以模仿多种裂纹形态,包括局部厚度分布和分支,并具有几个程度的表面粗糙度,因为[12]很好地证明了。到目前为止,合成裂纹并未与将CT图像用作背景的混凝土的微观结构相互作用。特别是,将裂缝分类为周围的混凝土组件。这是通过两步过程实现的。首先,通过模板匹配对裂纹结构进行了分割。然后,根据模板的方向上的灰色值对裂纹进行分类。在这里,我们提出了一种依赖于分割裂纹和聚集体的方法。然后将裂纹分配给两个可能的类别之一:经晶(通过聚集体)或晶间(聚集体之间)。然后,经晶裂纹体素的相对数量产生了一个度量,以量化裂纹行为的差异。在这里,我们研究了相同组成的难治性混凝土样品,但在不同温度下被后加工(烧结)。在压缩应力下扫描样品。他们清楚地表明,裂缝确实与混凝土的微观结构相互作用,请参见图1。裂纹可能沿聚集体,通过它们或通过周围的水泥矩阵传播。在失败之前,分析载荷步骤的经晶和晶间体素的分数进一步量化了烧结温度的影响。我们在两个圆柱形耐火混凝土样品的示例中演示了这一分析,分别在1.000°C和1.600°C下烧结。最近,我们为裂纹结构设计了一种多功能几何模型[8,9],用于方法验证和比较以及机器学习方法的训练 - 由随机Voronoi Tessellation的相位形成的最小表面。最小表面计算的优化方法的改进版本可实现多标准优化[17]。在这里,我们利用了这种新的可能性来生成合成裂纹结构,该结构避免了聚集体或通过图1中的真实混凝土样品中观察到的。
演讲 • 欢迎致辞 • RMI - 预购简介 • 先行者联盟 (FMC) – 来自私营部门需求倡议的见解 • NRDC / RMI – 公共部门低碳混凝土预购路线图
本清单第三版是在“投资便利化促进发展”项目框架下编写的,该项目由国际贸易中心 (ITC) 的 Quan Zhao 和 Rajesh Aggarwal 负责,德国发展研究所/德国发展政策研究所 (DIE) 的 Axel Berger 负责。本清单以 Khalil Hamdani 的初稿为基础,由 Karl P. Sauvant、Matthew Stephenson 和 Yardenne Kagan 组成的团队进一步完善。本清单第三版根据额外研究以及该项目框架内举办的各种活动参与者的评论进行了大幅扩充(有关这些活动的报告,请参阅 https://www.intracen.org/itc/Investment-Facilitation-for-Development/ )。还收到了来自各国际组织的反馈。此外,本报告还得到了 ITC-DIE/世界经济论坛投资促进发展框架评论小组成员的反馈,该小组主要由投资促进机构、外国直接投资服务提供者和国际投资者的代表组成。世界银行集团提供了有益的文本输入,Makane Moïse Mbengue、Jan Knoerich、Heather Taylor-Strauss、José Henrique Vieira Martins 和阿根廷商业和服务委员会协调的阿根廷意见也提供了有益的文本输入。特别感谢 Alexandre de Crombrugghe、Maximilian Eltgen、Jaime Granados、Andreas Hora、Mia Mikic、Ivan Nimac、Ana Novik、Ahmed Omic、Sebastian Reil、Bostjan Skalar、Ana Arias Urones 和 Douglas Van Den Berghe 提供的非常有益的评论。
4. 混凝土耐久性指标的测试方法 46 D. Bjegović, M. Serdar, I. S. Oslaković, F. Jacobs, H. Beushausen, C. Andrade, A. V. Monteiro, P. Paulini, S. Nanukuttan 46 4.1 简介 46 4.2 气体渗透性 47 4.2.1 原理和机理 47 4.2.2 测试方法 48 4.2.3 混凝土质量评估概述和标准 58 4.3 水性渗透性 59 4.3.1 原理和机理 59 4.3.2 测试方法 59 4.3.3 混凝土质量评估概述和标准 63 4.4 毛细吸收 64 4.4.1 原理和机理 64 4.4.2 测试方法 65 4.4.3 混凝土质量评估概述和标准质量 69 4.5 氯离子渗透 70 4.5.1 原理与机理 70 4.5.2 测试方法 73 4.5.3 混凝土质量评价概述和标准 86 4.6 混凝土电阻率和电导率 87 4.6.1 原理与机理 87 4.6.2 测试方法 87 4.6.3 混凝土质量评价概述和标准 90 4.7 结束语 91 参考文献 92