摘要 - 混合超级电容器(HSC)是创新的储能解决方案,在许多应用领域中变得至关重要。他们的性能受到多个参数的强烈影响,例如温度条件,负载特征和电荷(SOC)。出于这个原因,在不同情况下表征其表演变得至关重要。调查性能的最佳方法之一是采用电化学阻抗光谱(EIS)测量。但是,由于HSC是一项最近的技术,因此目前在文献中尚不提供针对阻抗分析的数据库和研究。因此,这项工作介绍了在不同的温度和SOC条件下进行大型测量运动的结果,以获取大型频率范围(从1 MHz到100 kHz)的阻抗数据。构造的数据集已用于研究阻抗异常,并分析温度和SOC可能对HSC阻抗产生的影响。大型获得的数据集也可以用于诊断和预后目的。本研究中使用的数据集可从https://doi.org/10.6084/m9.figshare.24321496获得。
i n tmagnet-supducductor杂种(MSH)系统已被证明是拓扑超导性工程和随之而来的Majorana零模式(MZMS)的多功能平台,这是朝着实现拓扑量子计算的重要一步。尤其是,创建具有广泛变化的磁性结构的MSH系统的实验能力 - 从铁磁和天空状到类似于抗铁磁磁性和抗磁性 - 为操纵和探索拓扑阶段提供了前所未有的机会。在这次演讲中,我将回顾一下新型拓扑超导阶段的理论预测和实验实现的最新进展 - 从强大和高级拓扑超导体到拓扑结节超导率 - 在MSH系统中。此外,我将展示MSH系统中磁性结构的原子尺度操纵如何为编织MZM提供新的途径。这反过来允许我们成功地展示了MSH系统中拓扑保护的量子算法的第一个实时模拟,例如Bernstein Vazirani算法。
摘要 - 使用2次生成高温超导体(2G HTS)磁带的电阻型超导故障电流限制器(R-SFCL)的设计。一方面,当淬火发生在整个导体上(即限制机制)时,它应该承受最高的电场以降低其长度并使其具有成本效益。另一方面,它还必须应对热点制度。临界电流范围内的故障电流可以导致沿导体长度的局部耗散,从而在显示最低值值的部分上。来自低正常区域传播速度的2G HTS磁带的电流几乎没有限制会导致这些区域的温度升高,从而极大地威胁了它们的完整性。总而言之,导体体系结构适应了高电场,并获得了热点制度中最高温度的无损值。但是,导致这种最后提及的制度的𝑰𝑰变化取决于沿胶带的位置。本文旨在鉴定可变导体长度对𝑰𝑰变化的影响,并因此对热点制度的影响。我们首先研究长度对𝑰𝑰变化的影响。当导体长度增加时,最小临界电流往往会减小。这种行为可以通过Weibull分布来建模,假设最小临界电流与无限导体长度不同。为了评估对热点制度的这种影响,我们使用2G HTS导体的确定性1D建模来开发一种概率方法,该模型沿其长度考虑了𝑰𝑰𝑰𝒄不均匀性,以模拟R-SFCL行为。看来,导体越长,热点状态中的最高温度就越高。此外,两个相对长度相对长度的测量值在热点状态下呈现不同的最高温度的事实导致了一种方法,可以设计出所需长度的大规模制造导体,可稳健,以在任何𝑰𝒄的变化中生存在热点方案中。
了解环境溶解的有机物(DOM)依赖于能够导航其固有复杂性的方法的发展。尽管分析技术一直在不断提高,从而改善了散装和分级DOM的见解,但单个化合物类别的命运几乎不可能通过当前技术跟踪。以前,我们报道了羧酸盐富含甲基分子(CRAM)化合物的合成,该化合物与以前可用的标准相比,与DOM共享更相似的分析特征。在这里,我们采用我们的合成式烤箱化合物并将它们与选择的一组策划的一组购买的分子以及选择的生物学或化学相关性的附加策划的一组购买的分子一起,采用我们的合成的CRAM化合物,将常规使用DOM用作批量材料。辐照实验通常表明,在饱和碳主链上仅携带羧酸和/或酒精的化合物对光化学降解具有最具耐药性,但在DOM的存在下,某些具有CRAM样式和化学功能的化合物也更稳定。在微生物孵化中,在各种水生环境中8个月后,我们的所有合成cram均完全稳定。这些实验集为环境中提议的CRAM的稳定性提供了支持,并提供了一个平台,可以使用该平台,可以使用多种多样的分子来帮助探测DOM的稳定性。
患有艾滋病毒的人也可能遇到神经认知缺陷。尤其是,与HIV衰老的人相关的HIV相关神经精神障碍(Hand)越来越关注,并且手经常使对老年人(和一些年轻人)HIV的护理复杂化。艾滋病毒患者的衰老以及与艾滋病毒相关的许多合并症(例如使用物质使用和慢性丙型肝炎)相关的神经认知问题,有助于诊断和管理认知问题的复杂性。此外,严重的抑郁症和精神病本身与认知问题密切相关。因此,关心艾滋病毒个体的临床医生应意识到筛查,诊断和管理心理健康状况和神经认知缺陷所带来的许多挑战,并应帮助患者获得适当的,综合的神经精神治疗的机会。也要记住,患有艾滋病毒的人可能有多个精神科或神经精神诊断。
传统的机油燃料汽车。燃料电池车辆依赖于将氢或甲醇转化为电的燃料电池。当前的领先技术是质子交换膜燃料电池(PEMFC),该技术用气态氢和质子导电膜运行。它提供了许多好处:良好的效率,可靠性和耐用性。但是,整体成本仍然很高,并且在传播技术方面的性能和耐用性方面的改善仍然是必要的。到目前为止已经研究了两种主要策略:一种涉及较便宜的催化剂的设计和开发,例如Pt/motybdenum Carbides; [2]另一个有吸引力的解决方案是在高温下操作PEMFC,这将简化热量管理,提高效率,提高质量运输,并极大地限制了一氧化碳对含量的催化剂。[3]美国能源部为PEMFC操作设定了120°C的操作温度。然而,由全氟磺酸(PFSA)聚合物组成的最先进的质子交换膜(PEM)被认为是基准材料,具有较差的机械和导电性能,可大大降低其在t> 100°C时的功效,从而限制了工作温度。在过去的二十年中,科学界制定了许多策略,以增强High
摘要 - 由于其高电流携带能力和单位长度高电阻,使用稀土bacuo(Rebco)涂层con污染器非常适合电阻型SFCL(超导故障电流限制器)。然而,如果在临界电流范围内的断层电流范围内,耗散可能会沿着整个长度高度不均匀,从而导致正常区域的局部性温度升高。这种所谓的热点制度是通过模拟工具很好地预测的,但很少以非破坏性的方式进行体验研究。本文提出了两个体验结果,强调了热点制度的存在。首先,通过高速记录与电动测量同步的氮气气泡,可以观察到Rebco胶带上的局部耗散。第二,通过对欧洲项目FastGrid开发的导体进行的测量,研究了限制结束时的最高温度作为前瞻性电流的函数。最高温度在接近coductor𝑰𝒄𝒄的接近的前瞻性电流中被发现最高。
摘要:功率半导体设备的状态监视(CM)增强了转换器的可靠性和客户服务。许多研究都研究了半导体设备故障模式,传感器技术和信号处理技术以优化CM。此外,由于使用物联网和人工智能技术的使用,Power Devices的CM的改进正在智能电网,运输电气等方面上升。这些技术将来将是普遍的,在这里,越来越多的智能技术和智能传感器将可以更好地估算设备的健康状况(SOH)。考虑到电源转换器的增加,CM至关重要,因为对从多个传感器获得的数据进行分析可以预测SOH,这反过来又可以正确安排维护,即考虑维护成本与设备故障所致的成本和问题之间的权衡。从这个角度来看,本评论论文总结了过去的发展和各种方法的最新进展,目的是描述CM研究中最新的最新技术。