我们邀请杰出候选人抓住机会,在由 William Witczak-Krempa 教授(加拿大量子相变研究主席)领导的研究小组中攻读理论量子凝聚态物理学领域的博士后职位。从 2024 年 9 月 1 日起加入小组,成为我们充满活力的团队不可或缺的一部分。任期为两 (2) 年,但第一年表现必须令人满意。可以延长至第三年。我们的研究小组深入研究物质量子相的理论方面,包括量子相变、拓扑态和非传统超导体。此外,我们使用与量子信息领域交叉的新方法来获得有关高度纠缠相的新见解。我们的方法涵盖了从尖端场论技术(包括共形场论)到复杂的数值方法。合作机会:这项事业超出了我们研究小组的范围,因为我们很自豪地与新成立的 Courtois 研究所合作。此次合作为利用人工智能深入了解量子多体物理学开辟了道路。详细了解 Institut Courtois 的合作协同效应。
•跟踪理想量子测量物理的动力学。修订版Lett。 124,080401(2020),Arxiv:1903.10398 F. Pokorny,C。Zhang,G。Higgins,A。Cabello,M。Kleinmann和M. Hennrich(列在“物理世界世界十大突破”,2020年。Lett。124,080401(2020),Arxiv:1903.10398 F. Pokorny,C。Zhang,G。Higgins,A。Cabello,M。Kleinmann和M. Hennrich(列在“物理世界世界十大突破”,2020年。
检测和认证材料中的纠缠和量子关联具有根本性和深远的意义,并且最近取得了重大进展。它既影响对量子多体现象基础科学的理解,也影响对适用于新技术的系统的识别。在量子信息理论的背景下,已经开发出适用于凝聚态物质的框架,将测量与纠缠和相干性联系起来。它们以纠缠见证和量子关联测量的形式出现。全面回顾了这些量的基础理论、它们与凝聚态实验技术的关系以及它们在真实材料中的应用。此外,还介绍了它们在协议等中的用途、见证和测量的相对优缺点,以及在关联电子、纠缠动力学和纠缠光谱探针等方面的未来前景。通过提供从基础到应用的易于理解和实用的处理,考虑到这项新兴研究的跨学科性质和正在进行的重大进展。特别强调了可通过集体测量获得的量,包括通过磁化率和光谱技术。这包括磁化率见证、单纠缠、并发和双纠缠、双点量子不和谐以及量子相干性测量(如量子 Fisher 信息)。
CECMD计划奥地利:Silke Buhler-Paschen(Tu Vienna),Wolfgang Lang(U. Vienna)克罗地亚:Acraftia:Acraft,Denis Sundis Sunko,(U. Zagreb)Czechia:MCHALURBánek,1月)。 Milaval和经济学布达佩斯斯洛伐克:米拉夫拉特,斯洛夫特,滑动,斯洛文尼亚,斯洛文尼亚,斯洛文尼亚,斯洛维亚。 (Joear的Stefan Inst。瑞士:Johan Chang(U. Zurich))Switcherland,MID-eu倡议的负责人:Christian TeichertÖPG教堂负责人沃尔夫冈·朗(Wolfgang Lang)负责人
M.Cristina diamantini coll:•Carlo A. Tugenberger,瑞士科学•Valerii Vinokur,Terra Quantum ag•Luca Gammaitoni,Perugia大学•Yavok Kopelevich,Yavok Kopelevich,Yavok Kopelevich,Universide de Campinas•Alexey Mironov,Svetlana Localovauctiie semickoductuctuctuctuctuctuctiire Inverave inverave in naviova Noguiera Leibniz学院德累斯顿•Nicola Poccia Leibniz Institute Dresden•Christoph Strunk,雷根斯堡大学
July 24th, 2024 Poster # : 1 Poster Presenter : Grigor Adamyan Title : Hofstadter quasicrystals, hidden symmetries and irrational quantum oscillations Affiliation : Johns Hopkins University Poster # : 2 Poster Presenter : Omer Mert Aksoy Title : Gauging finite modulated symmetries in 1+1D and Kramers-Wannier dualities Affiliation :马萨诸塞州技术研究所海报#:3海报主持人:Meabh Allen标题:由Quinter Spin链条中的淬火协议引起的相关性:加利福尼亚大学,伯克利分校的海报#:4海报演讲者:Amogh Anakru:Amogh Anakru标题:拓扑阶段:拓扑阶段和折线式贴身式贴张:5 poter affing afring Affiriation:55 : Tuning coherence in granular aluminum nanobridges using microwaves Affiliation : School of Physics and Astronomy, Tel-Aviv University Poster # : 6 Poster Presenter : Iftakhar Bin Elius Title : Electronic structure of Rare earth based nodal line semimetal series ReSbTe Affiliation : University of Central Florida (UCF) Poster # : 7 Poster Presenter : Sayanwita Biswas Title :单轴菌株对KTAO3超导隶属关系的影响:匹兹堡大学海报#:8海报主持人:TU CAO标题:tu CAO标题:用于模型圆形费米表面的BCS方程,以及以及各向同性旋转 - 旋转 - 互动互动:George Masonson University
Andrea Cavalleri教授是Max Planck物质结构与动态研究所的董事,汉堡(德国)(德国),牛津大学(U.K.)的物理学教授,该奖项将于2024年9月4日星期三与EPS Condensed Matter Matter Incorius(cmd31 of Eps Condensed Mandimant of Eps Condensed Incorius of Eps Condensed Incorius the Cmd31)颁发,并在201年9月4日(星期三)颁发。葡萄牙物理社会)。该奖项自1975年以来已获得(这是第41版),是欧洲最负盛名的物理学领域最负盛名的奖品之一。是为了承认一个或多个个人对凝结物理学的突出,突破或对凝结物理物理的贡献的贡献,这是一个或多个个人的贡献,这些贡献在选拔委员会认为是科学卓越的。该奖项认可了在欧洲进行大部分工作的研究。可以在此处找到所有奖品版的摘要。
图2。在抗铁磁三角形上最好地说明磁挫败感,在抗铁磁三角形上,所有相互作用都无法同时满足(中心)。有多种沮丧的几何形状可以在实际量子材料中探索。个人资料我们正在寻找一个高度动机的候选人,具有凝聚态物理学的科学背景。他/她应该表现出出色的实验能力,并且将有机会在国际环境中学习最新的光谱技术(NMR,MUSR,非弹性中子中子散射)以及散装的热力学技术(超声,特定的热量)。候选人应拥有硕士学位。必须对英语有良好的工作知识。开始日期不迟于2025年12月。雇用的博士生将基于Laboratoire de Physique des solides(Orsay,France)的量子材料团队的光谱,并有机会参观舍布鲁克大学(QC,加拿大QC)物理系。净工资由CNRS确定,并带有福利(健康保险,运输等)。联系以获取更多信息,请联系:
我们对基于有限深度量子电路编码局部哈密顿量的基态的变分量子特征值求解器的精度进行了基准测试。我们表明,在有间隙相中,精度随着电路深度的增加而呈指数提高。当尝试编码共形不变哈密顿量的基态时,我们观察到两种状态。有限深度状态,其中精度随着层数的增加而缓慢提高;有限尺寸状态,其中精度再次呈指数提高。两种状态之间的交叉发生在临界层数处,其值随着系统尺寸线性增加。我们在比较不同的变分假设及其描述临界基态的有效性的背景下讨论了这些观察结果的含义。
凝结的异常实现,作为无磁场的量子霍尔效应(QHE)的平台,也称为量子 - 异常 - 霍尔效应(QAHE)。但是,没有人想象有一天可以创建该模型的物质实现。这种怀疑主义源于Mermin – Wagner定理,该定理被宽松地说明,意味着在2D中不存在远距离阶和术语晶体。在其影响下,实验者避开了试图实现2D材料,将发现延迟了数十年。在这种背景下,通过机械效果与石墨隔离石墨烯是一个巨大的惊喜。这一突破很快导致观察到异常的整数QHE确认了石墨烯中电荷载体的狄拉克性质。[4,5]然而,尽管很容易观察到QHE,但仍试图深入研究石墨烯荷载体的狄拉克性质,撞到了路障。随后通过使用STM和单电子晶体管来阐明进入石墨烯内在的特性的挑战。这些局部探针由于其2D性质而对石墨烯造成的,对掩盖其内在特性的随机电势波动极为敏感。因此,要准确探测石墨烯,保护其免受侵入性环境和底物诱导的干扰至关重要。