CARE International 是一家人道主义非政府组织,致力于与贫困妇女、男子、男孩、女孩、社区和机构合作,对贫困的根本原因产生重大影响。CARE 致力于促进经济和社会转型,释放最脆弱妇女和女孩的力量。由 ECHO 资助的 APEAL IV 项目是一个为期 22 个月的保护重点项目,在西尼罗河和乌干达西南部实施,针对难民。项目实施期从 2022 年 5 月 1 日至 2024 年 2 月 28 日。该项目以联盟方式实施,由 CARE International 牵头。该联盟的其他成员包括国际救援委员会(IRC)、国际救助儿童会(SCI)、人道与包容组织(HI)、荷兰战争儿童组织(WCH)、跨文化心理社会支持组织(TPO)、女孩日(DFG)、乌干达律师协会(ULS)、西尼罗河和平与发展社区赋权组织(CEPADWN)和难民妇女图迈尼组织(TRW)。
摘要:本研究在高性能芳香族聚磺酰胺 (PSA) 纤维上设计并构建了双层纳米涂层,以实现强大的导电和电磁干扰 (EMI) 屏蔽。更具体地说,首先通过化学镀镍 (Ni) 或镍合金 (Ni-P-B) 赋予 PSA 纤维必要的电导率。之后,进行银电镀以进一步提高复合材料的性能。彻底研究了所提出的包覆纤维的形貌、微观结构、环境稳定性、力学性能和 EMI 屏蔽性能,以检查电沉积对非晶态 Ni-P-B 和结晶 Ni 基材的影响。获得的结果表明,PSA@Ni@Ag 和 PSA@Ni-P-B@Ag 复合纤维均具有高环境稳定性、良好的拉伸强度、低电阻和出色的 EMI 屏蔽效率。这表明它们在航空航天、电信和军事工业中具有广泛的应用前景。此外,PSA@Ni-P-B@Ag纤维配置似乎更合理,因为它表现出更光滑、更致密的银表面以及更强的界面结合,从而导致更低的电阻(185 m Ω cm − 1 )和更好的屏蔽效率(X波段为82.48 dB)。
Terahertz(THZ)技术提供了从卫星和望远镜的校准目标到通信设备和生物医学成像系统的机会。一个主组件将是具有切换性的宽带THZ吸收器。然而,稀缺的具有光学切换的材料,它们的调制大多在狭窄的带宽下可用。在吸收或传播中实现具有大型和宽带调制的材料构成了关键的挑战。这项研究表明,进行聚合物 - 纤维素气凝胶可以提供宽带THZ光的调制,其调制范围很大,概率为≈13%至91%,同时保持镜面反射损失<-30 dB。特殊的THZ调制与导电聚合物的异常光学电导率峰有关,从而增强其氧化态的吸收。这项研究还证明了通过简单的化学修饰降低表面亲水性的可能性,并表明在光学频率下宽带吸收气凝剂可以通过太阳能诱导的加热来降低质量。这些低成本,水溶液可加工,可持续和生物友好的气凝胶可能会在下一代智能THZ设备中使用。
RBKC 希望在设计和调试联网场所项目时,制定一种一致的方法来理解和沟通问题。他们已经建立了信息安全信息治理和风险管理功能,但他们希望开发一个流程,以精细的级别关注联网设备的安全状况,并让所有相关利益相关者(包括业务和技术利益相关者)参与其中。STRIDE 威胁分析资源使 RBKC 能够创建一套基础资源来支持他们的联网场所计划。RBKC 现在已经开始思考如何创建联网场所风险的动态视图,该视图将根据固件更新定期更新,或者展示风险如何受到某些威胁载体的影响。
广泛的纳米光子应用依赖于极化相关的等离子体共振,这通常需要具有各向异性形状的金属纳米结构。这项工作通过破坏材料介电常数的对称性,证明了极化相关的等离子体共振。研究表明,导电聚合物的分子排列可以产生具有极化相关等离子体频率和相应的平面双曲介电常数区域的材料。这一结果不仅仅是基于各向异性电荷迁移率的预期结果,还意味着电荷载体的有效质量在聚合物排列时也变得各向异性。这一独特特征用于展示圆对称纳米天线,其提供与排列方向平行和垂直的不同等离子体共振。纳米天线可通过聚合物的氧化还原状态进一步调节。重要的是,聚合物排列可以使等离子体波长和共振蓝移几百纳米,形成一种新方法,以实现可见光氧化还原可调导电聚合物纳米天线的最终目标。
对定量和定性研究的全面知识使学术研究系统化并提高了研究成果的质量。科学研究人员必须熟悉他们,并熟练地在他们选择的研究类型的框架内进行调查。进行定量研究时,科学研究人员应描述现有理论,从理论中产生假设,检验其在新研究中的假设并重新评估理论。此后,他们应该采用演绎方法来编写基于实验的既定理论的测试。进行定性研究时,科学研究人员提出了一个问题,通过进行一项新颖的研究来回答这个问题,并提出了一种新理论来澄清和解释获得的结果。之后,他们应该采用一种归纳方法来编写基于收集的数据的概念的制定。使用定量和定性研究方法,当科学研究人员结合了整个归纳和演绎研究方法时,他们采用混合方法研究。对这些研究方面的熟悉和熟练程度有助于建立新的假设,理论的发展或概念的完善。
由于其电导率的微调,这些聚合物已成为设计微电子局部电活性模式的一种替代方案。 [12,13] 在这种情况下,通常使用不同的制造技术,例如注射打印、光热图案化、3D 打印和压印,以及电子束或紫外光刻,[14–21] 例如,在聚吡咯和聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸盐基底上产生明确的导电图案。 [16,20] 然而,人们非常需要用于导电基底局部图案化的低成本和直接的方法。 在这种情况下,双极电化学 (BE) 被认为是一种有趣的替代方法,用于局部改性导电物体。 [22–27] 该概念基于由于外部电场 (ε) 的存在而导致的导电基底的不对称极化。在这种条件下,在暴露于电解质溶液中的ε 的物体双极电极 (BPE) 的每个末端都会产生极化电位差 (ΔV)。在存在电活性物质的情况下,仅当ΔV 超过热力学阈值电位 (ΔVmin) 时,BPE 的两端才会发生氧化还原反应。这一概念已用于不对称生成图案化梯度,范围从材料的化学组成到润湿性。[28–33] 近年来,该方法还被用于通过双极电解胶束破坏或电接枝来产生有机薄膜梯度。[34–36] 一种有前途的替代方法是利用导电聚合物有效的绝缘体/导体转变来产生不对称的充电/放电梯度。[37] 例如,Inagi 等人。已经利用这一概念,使用 U 型双极电化学电池在不同的 π 共轭聚合物(如聚苯胺、聚-3,4-二氧噻吩、聚-3-甲基噻吩和共聚(9-芴醇)-(9,9-二辛基芴))中诱导导电模式。[38–41] 此外,已经证明,通过使用复杂的双极电化学装置,可以产生陡峭的局部掺杂梯度。[42] 在此,我们利用双极电化学方法,在掺杂有十二烷基苯磺酸根阴离子(DBS)的柔性独立聚吡咯条(Ppy)上产生局部电阻梯度。之前已有报道通过双极电化学对导电聚合物进行不对称改性,但主要集中在光学跃迁(颜色变化)上。由于对于导电聚合物,电导率
皮肤电极通常用于非侵入性电生理学检测来自大脑、心脏和神经肌肉系统的信号。这些生物电子信号以离子电荷的形式从其源头传播到皮肤电极界面,然后被仪器检测为电子电荷。然而,这些信号的信噪比较低,这是由于组织与电极接触界面的高阻抗所致。本文报告称,与体外模型中隔离单个皮肤电极接触的生物电化学特征的临床电极相比,纯由 PEDOT:PSS 制成的软导电聚合物水凝胶的皮肤电极接触阻抗几乎降低了一个数量级(在 10Hz、100Hz 和 1kHz 时分别为 88%、82% 和 77%)。将这些纯软导电聚合物块集成到粘性可穿戴传感器中,与所有受试者的临床电极相比,可以获得具有更高信噪比(平均增加 2.1dB,最大增加 3.4dB)的高保真生物电子信号。这些电极的实用性在神经接口应用中得到了证明。导电聚合物水凝胶使机械臂能够基于肌电图进行速度控制,以完成拾取和放置任务。这项工作为表征和使用导电聚合物水凝胶以更好地耦合人与机器提供了基础。
碳聚合物广泛应用于航空航天、电子、[1–4] 太阳能电池技术、[5–9] 太阳能水净化、[10] 电池(如超级电容器)[11–14] 和生物医学工程(如记录和刺激电极涂层、药物输送、组织工程支架)。[15–21] 这些聚合物固有的导电性来源于它们的化学结构,该结构由重复的单键和双键(π-π)碳键交替链组成,允许电子沿着聚合物主链自由移动。此外,这些材料可以通过几种工艺(如化学、电化学、光子)进行掺杂,通过极化子的积累有效地提高它们的电导率。[22] 除了出色且可调的电性能外,碳聚合物还是一种经济高效的金属替代品,可生物降解、生物相容性好,可以通过多种工艺合成,并可以涂覆在不同类型的基材上。在研究最多的 CP 中,我们发现了聚吡咯 (PPy)、聚苯胺 (PANI) 和聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT/PSS)。所有这些 CP 都已广泛应用于生物医学应用,用于生物电测量、电刺激、药物输送以及生物致动器和生物传感器。[23–27] 特别是,由于 PEDOT 的高电化学稳定性和三维结构,在过去十年中,将其用作刺激电极涂层一直是研究的中心。
日内瓦安全政策中心 (GCSP) 是一个国际基金会,服务于全球个人和组织社区。该中心的使命是通过高管教育、外交对话、研究和政策建议,提供有效和包容性决策的知识、技能和网络,促进和平、安全和国际合作。关于作者 Tobias Vestner 是日内瓦安全政策中心 (GCSP) 研究和政策咨询部负责人、安全和法律项目负责人。他是埃克塞特大学的名誉高级研究员、欧洲盟军最高总部研究员和联合国裁军研究所非常驻研究员。他担任瑞士武装部队参谋部的预备法律顾问。本章的研究结果于 2022 年 10 月 7 日在瑞士武装部队学院进行展示和讨论。作者感谢 Claude Meier、Christian Bühlmann 和 Ricardo Chavarriaga 对上一稿的评论,以及 Juliette François-Blouin 的研究协助。日内瓦安全政策中心 Maison de la paix Chemin Eugène-Rigot 2D PO Box 1295 1211 Geneva 1 Switzerland 电话:+ 41 22 730 96 00 电子邮箱:info@gcsp.ch www.gcsp.ch 本出版物中表达的观点、信息和意见均为作者本人观点,并不一定反映 GCSP 或其基金会理事会成员的观点、信息和意见。 GCSP 对信息的准确性不承担任何责任。© 日内瓦安全政策中心,2023 年 1 月 引用:Tobias Vestner,《从战略到命令:利用人工智能准备和开展军事行动》,载于 Robin Geiß 和 Henning Lahmann 编辑的《战争与人工智能研究手册》(Edward Elgar Publishing,即将出版)。