• 扩大粉末合成工艺,以生产具有所需成分和化学性质的 50g 电解质和电极材料。 • 使用纳米烧结助剂在低温(<1400°C)下合成致密质子传导电解质,并鉴定质子、氧离子和电子电导率 • 使用我们开发的电解质和电极材料成功制造 H-SOEC 纽扣电池。 • 设计实验设置并利用先进的表征技术。已经建立了在实际蒸汽电解下运行的结构和化学降解机制。 • 研究了高蒸汽和 Cr/Si 蒸汽下选定电极的性能退化,并根据特性和结果提出了机械模型 • 已经研究了缓解电池性能的方法。已经发现低成本的吸气剂可以捕获痕量污染物并防止电极退化。 • 研究生接受了实验方法和分析工具方面的培训。博士后研究员和本科生也在学习 SOEC 技术、质子传导氧化物化学。 • 有效利用了 EMN 网络和 NREL、INL 和 PNNL 的核心实验和计算能力。预算期 2 和 Go/No-Go 决策的总体计划目标 (M4-1 和 GNG-BP1) 已经实现。
配电线路要么是三相线路,要么是单相线路;“相位”描述的是线路上的电力分配。单相线路通常有一条传输电力的线路和一条中性线。三相线路有三根导线,它们传输的电力相位彼此不同,相差正好 120 度;在某些配置中,还有第四条中性线和线路与地线。实际意义在于,三相线路提供更稳定的电力来源,能够更好地处理更高的电力负荷。它们通常用于商业和工业建筑,可以为大型工业电动机供电。单相线路适用于住宅照明和供暖负荷。与单相线路相比,三相线路还可以容纳来自分布式发电设施(如太阳能电池阵列)的更大能量输入。缩写和首字母缩略词
本文档是公认的手稿版本的已发表作品,以ACS应用聚合物材料以最终形式出现3(6):2865–2883(2021),版权所有©2021 American Chemical Society在PEER PEER REVICE和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https:// doi.org/10.1021/acsapm.1c00252
目的陈述110•研究问题110•假设111•研究目标111为什么这些陈述和问题很重要?112您如何设计定量目的陈述,研究问题和假设?112指定变量112•变量家族114•关于识别变量的思考?119•变量的理论和测试120•写作定量目的陈述122•编写定量研究问题124•写作定量假设125您如何设计定性目的陈述和研究问题?128区分定量和定性目的陈述和研究问题128定性研究中的核心现象129定性研究中的新兴过程130•写作定性目的陈述131•写作定性研究问题132重新介绍父母的参与和母亲在主要研究中的信任136
摘要尽管在实验室中发现的潜在生物标志物数量增加并在许多文献中报告,但在临床实践中常规可用的生物标志物来为治疗决策提供了信息,这是非常有限的。新健康技术的补偿决策通常通过经济评估来告知;但是,诊断/测试技术(例如伴随生物标志物测试)的经济评估远低于药物的频率。此外,很少有国家提供针对共同依赖技术(例如伴随诊断或精确药物)的健康经济评估方法指南。因此,本文旨在指导针对靶向疗法的癌症生物标志物成本效益模型的发展,重点是伴随诊断。本教程论文提供了有关如何对癌症生物标志物进行经济评估以及如何对生物标志物测试的特征进行建模的实用指导,这是相应目标疗法的价值的一部分。本文简要介绍了方法和数据要求,构建伴侣癌症生物标志物的健康经济模型的分步指南,以及对他们在医疗保健决策中的应用中出现的问题的讨论。R在R中提供了该实用的指导,本文提供了与随附的电子补充材料中的R码一起提供的示例。
纳米结构的应用受到限制,因为事实证明,在制造之后修改其静态属性过于困难。[19] 为了解决这一重大问题并开辟在纳米尺度上动态控制光的途径,研究正转向具有可调特性的动态系统,例如基于相变材料[20–24]、掺杂的金属氧化物纳米晶体[25]和石墨烯[26–28]。受极强的氧化还原可调性的推动[29],我们最近引入了导电聚合物作为动态等离子体的新材料平台。[30] 导电聚合物以前曾被用来调节由金等传统金属制成的纳米结构的等离子体响应。 [31–34] 我们证明了高导电聚合物聚(3,4-乙烯二氧噻吩:硫酸盐)(PEDOT:Sulf)的纳米盘无需任何金属纳米结构即可用作动态等离子体纳米天线,聚合物本身由于其高移动性和大密度的极化子电荷载体(2.6×1021cm-3,由椭圆偏振法测定)而成为等离子体材料。[30] 令人兴奋的是,这些纳米天线可以通过化学调节聚合物的氧化还原状态来完全打开和关闭,这极大地调节了材料的电导率和光学性质。[30] 然而,调节过程基于暴露在气体和液体中,而未来的系统将需要更方便、更快捷的电调节。
工程应变加统一。d,Pt 电极和 BC-CPH 在第 1 次、第 5,000 次和第 10,000 次循环的电流密度与电位图。e,Pt 电极和 BC-CPH 的电荷存储容量 (CSC) 与循环伏安法 (CV) 循环的关系。f,Pt 电极和 BC-CPH 在第 1 次和第 1M 次循环的双相输入脉冲 (顶部) 和相应的电流密度与时间图 (底部)。g,Pt 电极和 BC-CPH 的电荷注入容量 (CIC) 与电荷注入循环的关系。全部 10
摘要:我们在此报告了一种新型两亲性二嵌段肽的合成,其末端结合的寡聚苯胺及其自组装成具有高纵横比(> 30)的小直径(d〜35 nm)结晶纳米管(> 30)。表明,在溶液中形成坚固的高度结晶纳米管中,对质子酸掺杂和脱兴过程非常稳定,可以在溶液中自组装自组装,形成坚固的高度结晶的纳米管中的肽三嵌段分子。通过电子显微镜成像揭示的纳米管组件的结晶管结构和X射线衍射分析的纳米管组件和非官能化肽的纳米管组件的相似性表明,肽是肽的有效有序的结构指导型Oligomers,是有效的有序结构。掺杂的TANI肽纳米管的膜的直流电导率为Ca。95 ms/cm
作者:AV Dorofeev · 2021 · 被引用 10 次 — ... 安全演习、培训、意识、桌面演习、网络防御演习、演习、网络靶场、网络安全多边形、ATT&CK。1.简介。它...
就像一张纸一样,电子纸可以用在照明中。除了节能之外,电子纸还具有提供无眩光表面的额外好处,即使在阳光下也能提高可视性(相比之下,目前的发射显示器在阳光充足的情况下很难看清)。[1,2] 基于液晶或电泳显示器等的黑白电子纸已经是流行的消费产品。然而,开发高性能彩色电子纸更具挑战性。特别是,仅基于环境光的图像生成会限制最大亮度。因此,仅仅优化色彩质量(色度)是不够的,高性能电子纸还需要高的绝对反射率。[3] 最近的研究探索了各种方法来创建高反射表面,这些方法基于薄膜腔的结构着色[4–9]、等离子体[10–15]或电介质超表面。 [16–18] 这些系统进一步与液晶、相变或电致变色材料等功能材料相结合,以打开/关闭此类反射表面。[19–23] 但是,即使单个区域可以提供 100% 的峰值反射率,使用彼此相邻的传统 RGB 子像素创建彩色图像也会将最大反射率降低到最多 33%,因为每种颜色最多只能占据总面积的三分之一。为了解决这个问题,我们需要开发具有可调颜色的反射像素(单像素),而不是依赖具有固定颜色的相邻像素。已经探索了各种方法来动态调整光腔和超表面的共振和颜色,[1,19,22,24–27] 其中一些通过电刺激来调节反射的结构颜色。[25,28,29] 其中包括使用具有电致变色特性的材料来调节纳米光腔和等离子体装置。 [3,30–32] 例如,Peng 等人利用聚苯胺的电化学可调折射率 (RI) 来控制聚合物涂覆的等离子体金纳米粒子和金属表面之间形成的间隙等离子体。 [33] 此类系统中的色域和色度通常受到限制,部分原因是 RI 可调性有限,以及电致变色材料的相对吸收性。最近,氧化钨 (WO3) 等无机电致变色材料也被提议用于光学腔的颜色调谐。 [3,34,35] 然而,任何单个 WO3 腔结构的调谐都无法覆盖整个可见光范围,[3] 这主要是因为无机电致变色材料没有提供足够的 RI 变化,并且在离子插入时也不会改变其厚度。为了实现全色调谐,使用