,尤其是识别软导管技术。[3,4]甘露和甘露的液体金属(LMS)引起了人们的关注。[5]利用其接近室温的液体 - 固体相变(t = 29.8°C)和较大的电导率(> 3×10 6 s m-1),使用了LMS,通常嵌入有机硅载体中,作为伸展的电导导体,以携带电力和信息或传输器具有多个功能。[5-10]由于其综合流变性,弹性地下的LMS尚未被广泛用于可靠,高性能,微型电路,这是由于开发与基于晶相的微技术相兼容的构图技术的挑战。[11] LMS在暴露于空气时形成薄(≈1–3 nm厚),表面固体氧化物皮肤。[12–14]氧化物平衡LMS的高表面张力并允许大多数表面润湿。这种现象是阻止当今LM电子技术的大型工业规模整合的主要阻碍因素之一。已经开发了几种技术来克服LM膜导体的生产性限制。[11,15,16]在一种方法中,LM图案是通过破裂氧化物皮肤,形成所需形状并通过氧化物皮肤再生而稳定的。3D和转移印刷技术依赖于这种氧化物皮肤稳定化来证明具有微观分辨率的痕迹。也证明了基于激光消融的类似方法,用于制造可扩展和高分辨率的LM网格。[17–20]但是,这种方法尚未被证明与大区块(> cm 2)电路的兼容,或者不能对LM Morphology提供足够的控制,因此无法保证高可扩展性(> 30%)。[21]激光微加工可以使高分子LM导体跟踪到4 µm线宽,但这种“串行”技术与大金属化密度绘制不相容。在另一种方法中,氧化物皮肤的生长要么通过真空处理下的加工或化学去除以允许在粘附层上润湿LM以增加与基材的亲和力。通过在金属润湿层上选择性电镀LMS来形成可拉伸(> 100%伸长)和狭窄(5 µm)图案的图案。[22]但是,大区域上的高分辨率电路尚未实现。
液体 - 固体增益混合物或双相增益(BGAIN)可以达到糊状的一致性,而不会失去液体金属的电性能。尽管在可加工性方面取得了进展,但尚未完全了解Egain和Bgain的电源。研究人员报道了egain的耐药性结果的相对变化(图1A)和液态金属的复合材料[32,33](包括双相材料和液态金属包含的弹性体或LMEES,或LMEES,如图1B所示)。尽管有些样本似乎遵循批量导体假设(Pouillet定律),但许多研究表明,低于模型预测的值的电阻。由于液态金属研究中使用的广泛测量技术,通常不清楚是由于内在电导率的变化而造成的差异,而不是由实验设置引起的未校正误差。为了说明测量技术的重要性,请考虑经典的两端测量系统的情况。这些测量值通常是要执行的EAS,但引入了重大的测量误差。[34]在此设置中,Sci-Intist或工程师将使用两条线将万用表连接到样品的两端(图2 A,B)。万用表报告的阻力必然包括感兴趣材料(例如,bgain等)的阻力。),除了包括铅线,铅线和样品电极之间的接触电阻以及任何组件(例如铜末端,导电环氧,氧化物,氧化物,[35]等)的抗性外,还包括)。)。在电线和感兴趣的材料之间。对于较高的电阻导体(例如传感器中的石墨 - 硅胶导电材料,通常在几个KΩ[36]范围内)寄生抗性可忽略不计。相比之下,如果样品电阻为1Ω,与0.1Ω的组合寄生抗性(对于LM电路常见),则寄生抗性表示固定的10%死亡重量误差。假设可以为可拉伸电子设备获得可靠的测量值,那么标记液体金属电源机电行为的正确模型是什么?图1显示了文献中报道的重要行为范围,但是许多作者认为批量构件假设(Pouillet定律[4,27,37])是适当的基准。通常,液态金属样品包含在弹性材料中,这些材料根据材料的泊松比减少其横截面区域。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
Yujie Yang a , Guanjie He b , Ivan P. Parkin, b Paul R. Shearing b , Dan J. L. Brett b , Jiujun
可充电固态电池(SSB)已作为基于降低的火灾危险和实现高级电池化学物质(例如碱金属阳极)的潜力而成为下一代储能装置。然而,陶瓷固体电解质(SES)通常在缓解机械应力方面具有有限的能力,并且对以身体为中心的立方体碱金属或其合金在化学上不稳定,或其具有较小溶质元件(β-相)的合金。肿胀 - 然后对β期的重新培训通常会引起不稳定性,例如SE断裂和腐蚀以及电子/离子接触的丧失,这会导致高电荷转移耐药性,短路等。这些挑战要求其他类别的材料和新型纳米复合体系结构的合作,以缓解压力和维护基本接触,同时最大程度地减少有害的破坏。在这篇综述中,我们总结了解决这些问题的最新进展,包括将其他类别的材料(MIEC)多孔中间层和离子电子绝缘子(IEI)粘合剂(例如SE和金属(例如β-相和当前的收集器)除外)是传统SSB组成的,除了SE和金属(例如β-相和当前的收集器)之外,还包括传统的SSB组合。特别是我们专注于提供理论解释,以了解开放式纳米孔MIEC中间层如何操纵β相沉积和剥离行为,从而抑制这种不稳定性,从而指代基本的热力学和动力学来控制β-相的成核和生长。审查结束时,通过描述SSB的多孔MIEC Interlayers未来设计的途径。
摘要 — 有源植入式医疗设备的密封和非密封封装通常由氧化铝等陶瓷制成。丝网印刷 PtAu 糊剂是功能结构最先进的金属化方法。由于 Au 在热暴露下会发生固态和液态扩散,焊接时间有限;否则金属结构容易分层。此外,研究表明,带焊料的 PtAu 会在 37.4 年后失效。我们建立了一种氧化铝薄膜金属化工艺来克服这些缺点。金属化由溅射铂和钨钛制成的底层粘附层组成,以增加与氧化铝基板的粘附强度。由于金具有较高的扩散趋势,我们避免在这项工作中使用金。相反,所使用的材料具有相对较低的扩散特性,这可能会提高组装和封装过程中的长期机械性能和可用性。
摘要:安全与环境执法局 (BSEE) 提议的行动是批准 Freeport 拆除三个 Point Arguello Unit 海上石油和天然气平台上的 62 个钻井导管。每个平台要拆除的钻井导管为 Hidalgo (14)、Harvest (19) 和 Hermosa (29)。拆除将分两个阶段进行:1. 初始导管套管切割/验证;2. 导管套管提取。第一阶段预计总持续时间为 78 天,第二阶段预计需要 130 天,项目总持续时间为 208 天。第一阶段将采用高压磨料切割方法进行初始切割。这涉及泵送含有海水和磨料混合物的磨料液体以切割现有的导管和其他套管串。根据 BSEE 要求,初始切割将在泥线以下约 15 英尺 (ft) 处进行。第 2 阶段包括拉出切断的导管套管并进一步切割管段,以便定期装船并运输到岸上,这些船只将运输切割的管段,然后装上卡车并运输到岸上的废料回收设施。其余平台(包括导管架和甲板)将保留在原处,直到该导管拆除项目完成并且 BSEE 批准即将提出的退役平台拆除申请。
Blackbird 是一款先进的 MWIR 探测器,是 SCD 高清探测器系列的扩展。它包括一个 3 兆像素 FPA,像素格式为 1920x1536,间距为 10μm。新的 FPA 基于 SCD 成熟的 InSb 技术和采用先进 CMOS 工艺实现的数字读出电路。FPA 的尺寸与 SCD 的 SXGA 格式 Hercules 探测器非常相似,实际上可以封装在同一个杜瓦瓶中。这产生了一个非常大的格式探测器,具有出色的图像质量、高帧速率和相对紧凑的尺寸。