该文件计划于 2025 年 2 月 5 日在《联邦公报》上公布,并可在 https://federalregister.gov/d/2025-02234 和 https://govinfo.gov 上查阅。
2025年1月30日,科学技术总裁助理迈克尔·克拉西奥斯(Michael Kratsios)总裁迈克尔·克拉西奥斯(Michael Kratsios)1650宾夕法尼亚大街,西北华盛顿特区,华盛顿特区,20504年,AI和加密货币大卫·萨克斯(Crypto David Sacks)总裁1650年宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州西北部的penn dc 20504 National Secutsia Avenue Mike Avenue Avenue 1600Washington, D.C. 20500 Acting Director Matthew Vaeth Office of Management and Budget 1650 17th Street NW Washington, DC 20006 RE: Veterans and Consumer Groups to White House: Don't Let the Federal Government Use Untested AI on Us Dear Mr. Kratsios, Mr. Sacks, Mr. Waltz, and Mr. Vaeth, Last week, President Trump signed an Executive Order instructing the Office of Management and Budget to revise key rules requiring that the federal government在将其用于消费者之前,请确保对AI系统进行测试和披露。包括用于帮助VA分配和优先考虑护理,筛选机场旅行者的AI系统,并审查老年人获得退休福利的机会。在使用AI系统上没有测试和透明性的护栏(护栏都如此基本),任何工程师都应该感到羞耻以释放产品 - 老年人,退伍军人和消费者都会使他们的福利不正确,并且健康危险。我们呼吁您保留有关对安全和权利影响AI进行测试和透明度的关键规则。当前的规则要求高危系统(例如医疗保健和福利中使用的系统)进行测试并透明地向公众报告。要求是基本的最佳实践:确保对系统进行测试并证明工作起作用,并接受持续的监控,以便它继续起作用。标准这些规则设置不高,要求指导本身所描述的“足够测试”是我们的老年人,退伍军人和日常消费者应得的最少的。众议院双方AI工作队报告说:“公众应该知道,联邦机构有成熟的政策来利用AI,同时维护
作为欺诈警报的替代方案,消费者有权在信用报告中放置“信用冻结”,这将禁止信贷局在信用报告中发布信息,而无需消费者的明确授权。信用冻结旨在防止未经同意的消费者名称批准信贷,贷款和服务。但是,消费者应意识到,使用信用冻结来控制谁在其信用报告中访问个人和财务信息的人可能会延迟,干预或禁止及时批准其有关其有关新贷款,抵押,抵押或任何其他涉及信用延长的新贷款,抵押,抵押或任何其他贷款的要求或申请。根据联邦法律,不能收取消费者的信用报告中的信用冻结。要请求信用冻结,个人可能需要提供以下一些或全部信息:
约 100 万亿美元。印度、东南亚(“SEA”)1 和中东 2 等新兴市场已显示出快速增长和数字化。COVID-19 大流行对全球经济造成了广泛破坏,但此后复苏势头强劲。根据国际货币基金组织(“IMF”)的数据,2023 年世界国内生产总值(“GDP”)估计约为 105 万亿美元,印度成为世界第五大经济体(按名义 GDP 计算)(截至 2024 年 4 月)。IMF 预测,未来五年全球 GDP 将继续以每年近 5% 的速度增长,到 2029 年达到约 140 万亿美元。与美国(“USA”)和英国(“UK”)等发达经济体相比,印度、东南亚和中东预计将经历更快的增长。根据国际货币基金组织 (IMF) 的数据,印度长期以来一直是增长最快的经济体之一,预计这一趋势将持续到 2024 年及以后。根据国际货币基金组织的数据,印度名义 GDP 预计以每年约 10% 的速度增长,到 2027 年达到 5.3 万亿美元。根据国际货币基金组织的预测,印度预计将在 2027 年成为世界第三大经济体。根据国际货币基金组织的《2023 年世界经济展望》,预计到 2027 年东南亚地区的 GDP 年增长率将超过 7%,这得益于印度尼西亚、菲律宾和越南经济的强劲表现,预计到 2027 年,这三个国家的 GDP 年增长率将超过 8%。中东也出现了类似的趋势,沙特阿拉伯和阿联酋是主要的经济中心,预计到 2027 年它们的增长速度约为 5%。总之,全球经济在疫情后重回增长轨道,预计未来几年这一趋势将保持强劲。印度、东南亚和中东正成为快速增长和数字化的亮点。
发展机构的走廊上普遍宣扬人力资本对发展的重要性,而发展中国家的政策制定者经常面临的最重要问题之一就是受过教育的青年失业。尽管经济合作与发展组织 (OECD) 国家提供的证据显示,人力资本积累与经济增长加速相关,但发展中国家为改善受教育机会和教育质量所做的大量努力平均而言并未转化为人均收入的提高。此外,各国人均受教育程度和人均产出的差异朝着相反的方向发展,近乎普及的教育减少了人均受教育程度,而人均收入差距却扩大了。1 我们如何调和这些看似矛盾的立场?问题在于一些发展中国家拥有相对丰富的技能,但其他制约因素阻碍了这些技能的需求和利用?还是因为学校教育没有培养技能,所以现有的学校教育和培训计划无法满足对人力资本的需求?或者是对人力资本和相对丰富技能的需求,但劳动力市场失灵阻碍了技术人员被雇用?在本要素中,我们认为这个难题的答案取决于国家特定的因素,并提出了一个框架来评估一个国家人力资本的改善是否可以合理地预期对经济增长产生影响。我们什么时候可以预期人力资本要素供应的改善有利于增长?索洛(1956)提出将经济产出建模并研究为具有互补投入的生产函数:物质资本和劳动力,以及取决于技术进步水平的生产率要素。曼昆、罗默和韦尔(1992)通过纳入人力资本的概念引入了一个增强模型。该模型假设资本收益递减——随着资本积累的增加,储蓄和投资资本的激励减少——导致人均收入水平由储蓄率、人口增长和技术进步(所有都是外生变量)决定。根据这些假设,人均产出增长是外生的:任何生产要素供应的永久性增加都将导致暂时的正增长率,从而使收入水平发生永久性转变。由此带来的经济增长只能是过渡性的。在此背景下,对人力资本存量的投资会导致收入水平转变,但不会促进增长。
摘要第一篇论文调查了使用机器学习来学习场景图像与场景颜色之间的关系,Funt等人发表了。在1996年。具体来说,他们研究了神经网络是否可以学习这种关系。在过去的30年中,我们见证了机器学习方面的一系列出色的进步,尤其是基于人工神经网络的深度学习方法。在本文中,我们想通过Funt等人更新该方法。包括最新的技术来培训深层神经网络。标准数据集的实验结果表明,更新版本如何将照明估计中的角误差提高几乎51%,而其原始配方,甚至胜过最近的照明估计方法。
实习的主要目标是对网格代表领域内的当前文献进行彻底审查。随后,目的是设计和实现3D网格自动编码器,以便能够准确捕获对象的形状并有效地将它们压缩到潜在表示中。利用潜在空间已被证明在生成模型中非常有效,如文本对图像模型中所示[6,7]。该自动编码器的潜在应用是多种多样的。主要是,它有可能通过促进潜在空间内的直接操作来大大减轻模型的计算负担。这不仅解锁了在网格序列上无缝工作的运动模型的可能性,而且还使模型的扩展能够处理多个字符,从而结合了它们之间的相互作用。其次,潜在空间可用于生成模型中,从而促进了从文本/图像/视频到姿势/运动的翻译。
研究人员是否知道道德考虑因素以及何时将其应用于研究?本文使用二级数据源来描述数据编辑学科和原则的各个方面,并以道德考虑在定性和定量研究方法中研究研究中的编辑数据。通过过去的研究,研究的道德亚结构包含三个层面的维度:哲学,实践和反思性。数据编辑过程探索和审查数据,以确保一致性,错误和异常值和纠正错误,以提高收集到的数据的质量,准确性和充分性,从而使其更适合于收集数据的目的,例如检测到数据持续数字的字段数量和误差。数据编辑过程基于逻辑,常识和遵守书面程序或编辑指南,针对院士,政策制定者和研究人员的未来研究人员。
我们介绍了Multidiff,这是一种新颖的方法,用于从单个RGB图像中始终如一地进行新颖的视图综合。从单个参考图像中综合新观点的任务是大自然的高度不足,因为存在多种对未观察到的区域的合理解释。为了解决这个问题,我们以单核深度预测变量和视频扩散模型的形式结合了强大的先验。单核深度使我们能够在目标视图的扭曲参考图像上调节模型,从而提高了几何稳定性。视频扩散先验为3D场景提供了强大的代理,从而使模型可以在生成的图像上学习连续和像素精度的对应关系。与依靠容易出现漂移和误差累积的自动格言形象生成的方法相反,Multidiff共同综合了一系列帧,产生了高质量和多视图一致的RE-
