不可能找到同质社会。人们经常旅行,有些人出生在一个国家,然后搬到另一个国家,在第三个国家或同时在多个国家工作。即使在同一个国家或同一个城市,人们也会遇到不同的文化。为了应对全球生活中和工作中的挑战,为了确保人与人之间的和平与理解,发展跨文化交流技能至关重要。跨文化能力不是与生俱来的,而是一种人们可以终生培养的态度和技能。国家文化能力委员会 (NCCC, 2009) 主张每个组织都应重视多样性,并将文化知识制度化为一个持续的过程。欧盟委员会 (2010) 强调了教师教育计划和政策在培养在文化多元化环境中有效工作的教师方面的重要性。
人类情感识别一直是心理物理学和计算机视觉的重要主题。但是,经常发布的数据集有许多局限性。进行检查,大多数数据集都包含仅包含有关面部表情的信息的框架。由于以前的数据集的局限性,很难理解影响人类识别的机制,或者在这些数据集中训练的计算机视觉模型上对人类的识别良好。在这项工作中,我们介绍了一个全新的大型数据集,基于视频的情感并影响上下文数据集(VEATIC)中的跟踪,可以征服先前数据集的限制。Veatic在好莱坞电影,纪录片和家庭视频中有124个视频片段,并通过实时注释进行了连续的价和唤醒评级。与数据集一起,我们采用了一项新的计算机视觉任务,以通过每个视频框架中的上下文和字符信息来推断所选字符的影响。此外,我们提出了一个简单的模型来基准这项新的计算机视觉任务。我们还使用数据集与其他类似数据集进行了预处理模型的性能。实验显示了通过VEATIC验证的模型的竞争结果,表明VEATIC的普遍性。我们的数据集可从https://veatic.github.io获得。
我们介绍多视图的细心上下文化(MVACON),这是一种简单而有效的方法,用于改善基于查询的多视图3D(MV3D)对象检测中的2D- TO-3D功能。尽管在基于查询的MV3D对象检测的领域取得了显着的进展,但先前的艺术通常会因高分辨率的高分辨率2D特征而缺乏基于密集的注意力提升的高分辨率2D特征,或者由于高计算成本,或者由于3D Queries的高度密集地接地不足,无法以3D Queries的高度质量为基于稀疏注意的多级2D功能。我们提出的MVACON使用代表密集但计算稀疏的细心特征连续化方案击中了两只鸟,该方案对特定的2d到3d feleture提升方法不可知。在实验中,使用BEVFormer及其最近的3D变形注意(DFA3D)变体以及PETR对纳斯曲霉基准进行了彻底的测试,并显示出一致的检测性能提高,尤其是在位置,方向和VELOCITY PRECTICTAR中提高了一致的检测性能。还可以在Waymo-Mini基准测试器上进行测试,并具有类似的改进。我们在定性和定量上表明,基于全局群集的上下文有效地编码了MV3D检测的密集场景级上下文。我们提出的MVA-CON的有希望的结果加强了计算机视觉中的格言 - “(contectu-alsized)特征事项”。
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
了解人类的社会行为对于综合愿景和机器人技术至关重要。微观的观察(例如,分裂行动)不足,需要采取一种全面的方法来考虑个人行为,组内动态和社会群体层次,以彻底理解。要解决数据集限制,本文引入了JRDB-Social,JRDB的扩展[2]。旨在填补跨室内和室外社会环境的人类理解的空白,JRDB-Social提供了三个层次的注释:个体属性,组内侵入和社会群体环境。该数据集旨在增强我们对机器人应用的人类社会动态的理解。利用最近的尖端多模式大型语言模型,我们评估了我们的基准,以表达其破译社会人类行为的能力。
培养学生对学习的兴趣被认为具有许多积极的下游效果。大型语言模型已经开辟了新的范围,以生成满足自己利益的内容,但目前尚不清楚这种自定义的方式在多大程度上可以对学习产生积极的效率。为了探索这个新颖的维度,我们进行了一项受试者间研究(n = 272),其具有生成的AI词汇学习应用程序的不同变化,使用户可以个性化他们的学习示例。参与者被随机分配给对照(句子来自先前存在的文本)或实验条件(根据用户的文本输入而生成的sen tence或短篇小说)。虽然我们没有观察到结构之间的学习绩效的不同,但分析表明,生成的AI驱动的环境个性化的个性化阳性的学习动机。我们不知道这些结果与以前的fndings有何关系,并强调了它们对使用生成AI进行个性化学习的新兴费用的意义。
不再是遥远的威胁,气候变化已经在损害人们的健康和生计,并加剧了世界各地的长期不平等现象,随着时间的推移,影响会恶化。在许多社区中,气候变化的影响既是殖民不公正和结构的结果,也是它们加剧的。许多国家的教育模式基于定居者殖民主义,该殖民主义并未完全捕捉不同问题5的相互联系,包括(气候)正义。通常,资源无视土著文化和传统,认为它们无关紧要。气候教育应解构这种世界观并整合资源和材料中的土著知识。这也提供了一个机会,可以探索通常被忽略的气候变化的传统当地解决方案。非殖民化气候教育的一些关键要素包括6:
摘要。预测隐藏在com-plex上下文中的对象的实例级掩码是伪装实例分割(CIS)的目标,这一任务因伪装的obs obsptss and Anckatiks之间的惊人相似之处而复杂。伪装观察的各种外观,包括不同的角度,部分可见性和模棱两可的信息,进一步加剧了这一挑战。先前的作品考虑在高不确定性区域内clasifulsiful sifialpixels,而无需考虑其文本语义,从而导致许多假阳性。我们提出了一种称为Mask2Camouflage的新颖方法,该方法同时增强了上下文特征的建模,并完善了实例级别的预测地图。mask2Camouflage利用多尺度功能集成了骨干线中提取的功能。然后,引入了全局细化的交叉注意模块(GCA),以补充前景面罩和背景掩盖,以减少假阳性。fur-hoverore,通过模拟全球换档聚类过程,我们介绍了全球偏移的多头自我注意力(GSA),该过程使对象查询不仅可以从早期功能中捕获信息,还可以从结构性概念中捕获信息,从而降低与评估的数据验证的掩体对象检测任务中的类内部问题。与15种最先进的方法相比,我们的Mask2Camouflage显着提高了伪装实例细分的性能。我们的代码可在https://github.com/underlmao/mask2camouflage上找到。
在 AfroSaúde,我们坚定地致力于满足对积极社会影响日益增长的需求,尤其是那些寻求在治理的社会支柱中通过 ESG 行动为内部和外部受众服务的公司。我们认识到健康是一项基本权利,而健康领域的不平等是一个关键问题。谈到心理健康,我们看到了令人震惊的数字,尤其是在疫情之后。因此,我们的努力致力于解决特别影响边缘化社区的不平等问题。通过与当地组织建立战略伙伴关系、开展宣传计划以及获取健康和保健信息,我们正在努力推动有效的变革。我们不仅希望提供优质的医疗服务,还希望促进公平、代表性和包容性。
临床成像工作流的主要重点是疾病诊断和管理,导致医学成像数据集与特定的临床目标密切相关。这种情况导致了开发特定于任务的分割模型的主要实践,而没有从广泛的成像群中获得见解。受到医学放射学居民培训计划的启发,我们提出了向普遍医学图像分割的转变,旨在通过利用临床目标,身体区域和成像方式的多样性和共同点来建立医学图像理解基础模型的范式。div of这个目标,我们开发了爱马仕,一种新颖的上下文 - 学习方法,以应对医学图像segmentation中数据杂基的挑战和注释差异。在五种模式(CT,PET,T1,T2和Cine MRI)和多个身体区域的大量各种数据集(2,438个3D图像)中,我们证明了通用范式比传统范式在单个模型中解决多个任务的传统范式的优点。通过跨任务的协同作用,爱马仕在所有测试数据集中都能达到最先进的性能,并显示出卓越的模型可伸缩性。其他两个数据集中的结果揭示了爱马仕在转移学习,分裂学习和对下游任务的概括方面的出色表现。爱马仕(Hermes)博学的先生展示了一个具有吸引力的特征,以反映任务和方式之间的复杂关系,这与既定的放射学解剖学和成像原则相吻合。代码可用1。