摘要。许多结构,如石油平台和风力涡轮机,都是在海洋环境中建造的。这些结构不仅要承受由风、浪和洋流引起的可变周期性载荷,还要承受腐蚀。它们的相互作用会导致腐蚀疲劳,从而缩短结构的使用寿命和完整性。研究界面临着一项挑战,即确定疲劳载荷和腐蚀的复合损伤机制,并将其与海上结构的寿命预测联系起来。本文提出了一种非线性腐蚀疲劳模型来描述基于连续损伤力学的损伤积累。疲劳耐久极限、载荷频率和腐蚀速率是影响疲劳和腐蚀相互作用的基本参数。通过对损伤的非线性积累进行积分,揭示了连续载荷效应。进行了参数研究以展示该模型的能力。初步模拟结果与腐蚀疲劳 S-N 曲线形式的实验数据高度一致。尽管如此,在较短的寿命期内仍观察到偏差,这些偏差有待进一步研究。未来将会进行参数标定以及进一步的验证实验。
在连续体(BICS)中的结合状态违背了传统智慧,该智慧假定传播波之间的光谱分离,将能量带走,并在空间局部的波浪中,对应于异常频率。它们可以描述为具有有限寿命的共振状态,即泄漏为零的泄漏模式。超材料和纳米光子学的出现允许在各种系统中创建BICS。主要是,BIC是通过在传出的谐振模式之间或利用工程的全局对称性之间实现的,从而实现了从周围辐射模式中实施对称性兼容的界限模式的解耦。在这里,我们研究了依靠不同的机械性的BIC,即局部对称性,这些对称性在不暗示任何全球对称性的情况下强制集中在复杂系统的一部分上。我们在compact一维光子网络中使用微波实验实现了这些BIC。我们证明,这种BIC在K空间中形成了一个有限的梯子,并源于两个拓扑奇异性的an灭,该拓扑奇异性是零和一个极点的散射矩阵。这种用于在复杂波系统中实现BIC的替代方案可能对需要高Q模式的非线性相互作用的传感,激光和增强等应用有用。
抽象量子计算机有可能加快某些计算任务。在机器学习领域中,这种可能性的可能性是使用量子技术,而量子技术可能无法经典模拟,但可以在某些任务中提供出色的性能。机器学习算法在粒子物理学中无处不在,并且随着量子机学习技术的进步,这些量子技术可能会采用类似的采用。在这项工作中,实现了量子支持向量机(QSVM)进行信号背景分类。我们研究了不同量子编码电路的效果,该过程将经典数据转换为量子状态,对最终分类态度。我们显示了一种编码方法,该方法在接收器操作特征曲线(AUC)下达到了使用量子电路模拟确定的0.848的平均面积。对于同一数据集,使用径向基础函数(RBF)内核的经典支持向量机(SVM)的AUC为0.793。使用数据集的简化版本,我们在IBM量子IBMQ_CASABLANCA设备上运行了算法,平均AUC为0.703。随着量子计算机的错误率和可用性的进一步提高,它们可以在高能量物理学中形成一种新的数据分析方法。
摘要,如果人类机器人相互作用(HRI)易于执行,则在机器人协助的搜索和救援操作效率将是有效的。可以使用柔软的机器人来完成,与刚性相比,该机器人的性能更好。其中,由于其光滑的性质,可以使用柔软的连续机器人(SCR)。SCRS有两种类型:软连续操作器(SCM)和软蛇机器人(SSR)。尽管这两个机器人在功能上不同,但在结构上是相似的。因此,这些机器人可以模块化和重新配置。SCM可以协助医疗团队进行采摘操作,而SSR可以穿越诸如地震之类的灾难后发生的限制空间。从我们的调查中推断出,文献中并没有很多研究工作侧重于disasaster后情况下的SCR的HRI方法。因此,在这项工作中,我们专注于开发模块化和可重构的SCR的HRI方法。
连续体(BICS)中的结合状态是零宽(有限的寿命),即使它们与连续的扩展状态共存,但仍在系统中仍然存在的特征模式。产生的高频共振可能在光子整合电路,过滤,传感和激光器中具有显着应用。在本文中,我们证明了基于光子三轴腔的简单设计可以同时显示Fabry-Pérot(FP)和Friedrich-Wintgen(FW)BICS,并且它们的出现非常依赖于将腔附着在外部介质上的方式。我们首先考虑一个对称腔,其中长度D 3的存根被两个长度D 2的存根包围,所有存根均由长度D 1的段隔开。当两个端口之间插入腔时,我们在理论上证明了在长度d 1,d 2 2和d 3之间的可辨式条件下,在实验上证明了FP类型的对称BIC(S-BIC)和抗对称BIC(AS-BIC)的存在。S-BIC和AS-BIC可能会彼此交叉,从而产生双重变性的BIC。通过打破腔体的对称性,AS-BICS和S-BIC可以融合在一起,并实现FW型BIC,其中一种共振保持为零,而另一个共振却宽阔。通过考虑另外的两个配置,其中三端腔与一个或两个端口仅在一个侧连接起来,可以在结构内部诱导其他BIC。通过略微使BIC条件略有失调,后者转变为电磁诱导的透明度 /反射或FANO共振。最后,可以设计这种三重速度腔,以实现某些频率的接近完美吸收。使用同轴电缆在辐射频域中通过实验确认了从绿色功能方法获得的所有分析结果。
Thibaut Faivre:我们目睹了批判性通信的数字化转型。这转化为从窄带到宽带技术的过渡的开始。在某些国家 /地区,公共安全组织已经将其全国性的关键沟通解决方案带到了法国,例如法国,其Réseauduedu Futur(RRF)或西班牙与Sistema de radiocomunicaciones digitales digitales dementes de Empercia del Expencia del Estado(Sirdee)。其他组织正在选择缓慢的过渡策略或混合配置,因为这些类型的过渡是需要大量投资和变更管理的长期项目。无论如何,宽带和窄带技术并非相反,我们可以从两者中获得最好的作用。这两个区域之间有许多连接,几年前就不存在。
摘要:在真核生物中,Cyclin依赖性激酶(CDKS)是DNA复制和有丝分裂的必需的,并且在整个细胞周期中,依次激活了不同的CDK-循环蛋白复合物。普遍认为,特定的复合物需要遍历G1中细胞周期的承诺,并分别促进S期和有丝分裂。因此,根据一个流行的模型,几十年来一直占据了领域的流行模型,在细胞周期的每个阶段,针对不同底物的独特CDK – cyclin compleces固有的特定座位生成了事件的正确顺序和时间。但是,编码细胞周期蛋白和CDK的基因敲除的结果不支持此模型。通过许多最近的工作验证的替代性“定量”模型表明,CDK活性的总体水平(具有相反的磷酸酶输入)决定了S期和有丝分裂的时间和顺序。我们通过建议将细胞周期分为离散阶段(G0,G1,S,G2和M)的细分被过时且有问题,从而进一步采用了该模型。相反,我们恢复了细胞周期的“连续性”模型,并提出与定量模型的结合更好地定义了理解细胞周期控制的概念框架。
摘要:连续体(FW-BIC)中的Friedrich – Wintgen结合状态在波物理现象的领域特别感兴趣。它是通过属于同一腔的两种模式的破坏性干扰来诱导的。在这项工作中,我们通过分析和数值显示了FW-BIC在T形腔中的存在,该腔由长度为d 0的存根d 0和两个长度d 1和d 2的侧向分支,该腔附着于限定的波导上。整个系统由在电信范围内运行的金属 - 绝缘子 - 金属(MIM)等离子波导组成。从理论上讲,当d 1和d 2相称时,这两个分支会诱导BIC。后者独立于D 0和有限的波导,其中T结构被移植了。通过打破BIC条件,我们获得了等离子诱导的透明度(PIT)共振。坑的共振对波导的介电材料的敏感性可能会被利用,以设计适合感应平台的敏感纳米传感器,这要归功于其很小的足迹。灵敏度为1400 nm/riU,分辨率为1.86×10 - 2 RIU显示出高度的性能水平。此外,该结构也可以用作生物传感器,在其中我们研究了人体中浓度的检测,例如Na +,K +和葡萄糖溶液,这些敏感性分别可以达到0.21、0.28和1.74 nm DL/G。我们设计的结构通过技术发展,并且具有良好的应用前景,作为生物传感器,可检测血红蛋白水平。通过Green功能方法获得的分析结果通过使用COMSOL多物理学软件基于有限元方法来验证。
图 4 成像簇的生物标志物和临床关联。A、该图显示四个 flortaucipir 簇的早期阿尔茨海默病 31 (SPARE-AD) 识别异常空间模式的中位数和四分位距 (x 轴) 和大脑年龄差距 (y 轴)。B、tau 簇的临床进展从认知无显著 (CU) 到轻度认知障碍 (MCI)/痴呆。C、tau 簇的临床进展从 MCI 到痴呆。D、该图显示三个磁共振成像 (MRI) 簇的 SPARE-AD 的中位数和四分位距 (x 轴) 和大脑年龄差距 (y 轴)。E、萎缩簇的临床进展从 CU 到 MCI/痴呆。F、萎缩簇的临床进展从 MCI 到痴呆。G、flortaucipir 和 MRI 簇组合的患病率。 H、I、评估萎缩与 tau 簇之间关联的多项逻辑回归模型的相对风险比 (RRR)。在 (H) 中,以边缘系统为主簇为参考、白质高信号 (WMH) 体积和 tau 簇为预测因子(在 y 轴上)的多项逻辑回归模型。在 (I) 中,以 tau 簇 I 为参考、载脂蛋白 E ε 4 和 MRI 簇为预测因子(在 y 轴上)的多项逻辑回归模型。红色表示显著关联。灰色表示不显著关联。X 轴为对数刻度。J、flortaucipir 亚簇和 MRI 簇组合的患病率。HSp,海马保留;LP,边缘系统为主
COVID-19 疫情加剧了行为健康挑战(包括心理健康和物质使用障碍),并对现有的护理系统和劳动力能力提出了巨大要求。行为健康是纽森政府的首要任务,而 COVID-10 疫情进一步加剧了整个医疗保健系统的不平等,因此现在是卫生保健服务部 (DHCS) 对加州行为健康系统进行最新评估的最佳时机。虽然 DHCS 将使用评估来指导其在 BHCIP 和 SMI/SED 1115 豁免申请等计划方面的工作,但它并不是唯一的信息来源,也不是对政府具体立场和计划的描述。DHCS 致力于继续与利益相关者密切合作,实施正在进行的关键计划,并随着行为健康计划的发展制定未来政策。