使用偏振滤波来最大化信噪比 (SNR),尽管使用低激发功率,但仍能获得良好的组织成像深度。然而,在将血管结构与髓鞘轴突进行比较时,内在信号可能会出现一些模糊性。上述工作通过结合分子成像(例如第三谐波产生 (THG))解决了这种矛盾。在眼科成像领域,有大量关于相位对比有助于识别细胞界面的研究。Sulai 等人以标准自适应光学扫描激光检眼镜 (AOSLO) 成像装置为基础,将相位对比附加到 AOSLO 系统中。8 显微镜点扩展函数的横向分离增强了整体对比度和检测系统微特征的能力。9 此后,再也没有在大脑中研究过类似的方法。然而,使用 NIR-II 光谱范围会减少光的散射,这可能有助于实现相位对比成像,如果应用于反射共聚焦显微镜设置,将会大有裨益。在没有飞秒源产生 THG 的情况下,血管造影可以从类似于光学相干断层扫描 (OCT) 中的散斑分析的技术中受益。基于信号的高频时间滤波,OCT 能够在体内检索红细胞路径。10 类似于 NIR-II 反射共聚焦显微镜的方法可以帮助区分皮质组织中的轴突和血管。在本研究中,我们调查了相位对比方案与 NIR-II 反射共聚焦显微镜的结合是否可以为细胞(包括管腔中的红细胞)提供内在对比。这项研究将表明,将这种成像装置与高频时间滤波相结合,可以证明是一种有效的框架,可以检测微血管网络结构(或血管结构),并区分皮质中具有流动的动态元素(如血管)和静态元素。我们的报告描述了成像装置、动态结构成像方法和体内测试,其中小鼠的头骨保持完整,以测试定制显微镜的功能。
寻求更可持续的策略来对比石材文化遗产的生物偏端化,因为它们对环境和健康的毒性和潜在影响,以找到合成杀菌剂的替代品。在这项研究中,测试了牛至和百里香精油(EOS)的应用,以控制佛罗伦萨大教堂外部大理石上的微生物生长,受到延长变暗影响。在原位应用之前,进行了预先测试,以评估EOS对大理石的干扰(在大理石样本上说比色和吸水)及其在抑制大理石菌群中的效率(对营养媒体的敏感性测试)。eos以非常低的浓度抑制从大教堂大理石中采样的整个可栽培的微生物群,而当它们用作2%溶液时,它们不会干扰未殖民大理石样品的颜色和吸水能力。然后,在佛罗伦萨大教堂的两个户外研究地点中,将两个EOS和商业生物剂生物素T用于大理石的原位试验中。通过多学科的原位非侵入性(比色法和ATP分析,显微镜)和EX PET(微生物可行滴度)测试来评估治疗方法的有效性。关于结果,我们发现了用于评估生存能力(可行和真菌可行滴度)的参数与活动(ATP测定)的良好对应关系,其中这些对应关系以及这些对应关系以及显微镜和比色。发现了一些差异,特别是通过可行的滴度,考虑到整个数据,在越来越多的情况下,使用牛至和百里香EOS的治疗对微生物群落有效。
1 London Collaborative Ultra High Field System (LoCUS), King ' s College London, London, United Kingdom, 2 Guys and St Thomas ' NHS Foundation Trust, London, United Kingdom, 3 Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King ' s College London, London, United Kingdom, 4 Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King ' s College London, London, United王国,5先生研究合作,西门子医疗保健有限公司,伦敦,英国,6 MRC神经发育障碍中心,国王学院伦敦国王学院,伦敦,联合王国,7生物医学图像技术,ETSITelecomunicaciCión,Madrid and Ciber-Bbn,ISCII和Madrid,Madrid,Madrid,Madrid,Madrid,Madrid,Madrid,Madrid,Madrid,Madrid,神经发育科学,精神病学研究所,心理学和神经科学研究所,伦敦国王学院,英国伦敦,9先生,放射科先生,放射科,大奥蒙德街儿童医院,伦敦,英国,
摘要 1 H MRI 通过利用组织微环境中的不均匀性的多功能对比,非侵入性地映射大脑结构和功能。然而,由于 MRI 信号和细胞结构之间缺乏直接联系,从磁共振成像 (MRI) 结果推断组织病理学信息仍然具有挑战性。在这里,我们展示了使用小鼠大脑的共配准多对比 MRI 和组织学数据开发的深度卷积神经网络,可以直接从每个体素的 MRI 信号估计组织学染色强度。结果提供了轴突和髓鞘的三维图,其组织对比与目标组织学非常相似,并且与传统 MRI 标记相比具有增强的灵敏度和特异性。此外,网络内每个 MRI 对比的相对贡献可用于优化多对比 MRI 采集。我们预计我们的方法将成为将 MRI 结果转化为神经生物学家易于理解的虚拟组织学的起点,并为验证新型 MRI 技术提供资源。
通过功能磁共振成像(fMRI)记录的神经反应解码视觉刺激(FMRI)呈现出认知神经科学和机器学习之间的有趣相交,这是理解人类视觉感知的有希望的进步。然而,由于fMRI信号的嘈杂和脑视觉表示的复杂模式,任务是具有挑战性的。为了减轻这些挑战,我们引入了两个阶段fMRI表示框架。第一阶段预训练fMRI功能学习者,其提议的双对抗性掩码自动编码器可以学习DENOCORED表示。第二阶段调谐功能学习者,以通过图像自动编码器的指导来了解视觉重建最有用的神经激活模式。优化的FMRI功能学习者然后调节了一个潜在扩散模型,以重建大脑活动的图像刺激。实验结果证明了我们的模型在产生高分辨率和语义准确的图像方面的优势,从39中实质上超过了先前的最新方法。在50道路-TOP-1语义分类精度中的34%。代码实现将在https://github.com/soinx0629/vis_dec_neurips/上提供。
磁共振成像 (MRI) 是一种全球公认的诊断程序,尤其因其卓越的软组织对比度、高分辨率成像和非电离辐射特性而受到认可,使其成为医学领域不可或缺的工具。然而,为了优化 MRI 对某些疾病的敏感性和特异性,使用造影剂变得必不可少。最近的发展集中在基于纳米材料的 MRI 造影剂,以提高诊断准确性和图像质量。本综述重点介绍了此类药剂的进展,包括金属氧化物纳米粒子、碳基材料、金纳米粒子和量子点。它讨论了它们在 MRI 引导治疗中的作用,如靶向药物输送、热疗、放射疗法、光动力疗法、免疫增强疗法和基因疗法。还提供了对 MRI 造影剂在影像医学中未来潜力的见解。
我们证明,飞秒光脉冲的时间对比度是透明介电内部激光写作的关键参数,允许不同的材料修饰。特别是,二氧化硅玻璃中的各向异性纳米孔由10 7飞秒YB的高对比度产生:kgw激光脉冲,而不是低对比度的10 3 yb纤维激光脉冲。差异起源于纤维激光器,该纤维激光器将其三分之一的能量的能量存储在最高200 ps的脉冲后。通过激光诱导的瞬时缺陷吸收脉冲的这种低强度分数,其寿命相对较长,激发能量(例如自捕获的孔)极大地改变了能量沉积的动力学和材料修饰的类型。我们还证明,低对比度脉冲可以有效地创建层状双重结构,该结构可能是由四极杆非线性库驱动的。
本次会议的目的是提供一个论坛,以介绍和整理涉及化学或生物学开发的分子探针(光学,MRI,核,多模式)的重要和令人兴奋的研究,可用于生物医学研究和临床实践。适合这种征集的论文包括但不限于对成像剂,成像酶,内源性对比剂,光遗传学结构,能够激活的探针,受体,组织,组织或功能特异性探针,纳米粒子和临床分子的临床探针的临床和临床分子的临床探针和临床分子的临床探针和物理学的临床,代理,可视化生物系统探针的仪器,用于图像分析的新算法以及生物标志物和传感器在医学和生物学中的应用。本次会议将针对最先进的研究,以突出体外或体内这些领域的进步,并包括各种应用。为会议的多学科性质,请要求各种主题领域的论文,包括以下主题:
摘要在包含物和不同材料的基质组成的复合材料中,一些包含物彼此紧密地位于彼此之间。如果夹杂物的材料特性与基质的材料特性高,则场浓度发生在紧密的夹杂物之间的狭窄区域中。在复合材料和成像理论中,定量地理解场浓度是重要的,因为它代表了压力或场的增强。过去30年左右,在分析这种野外浓度方面的情况下取得了重大进展:最佳估计和渐近表征限制了场浓度,在电导率方程(或抗层弹性),线性弹性系统和Stokes系统的情况下得出了现场浓度。本文的目的是以连贯的方式审查其中的一些。
艺术图像的抽象风格转换是当前图像处理字段的重要组成部分。为了访问样式图像的美学艺术表达,最近的研究将注意机制应用于样式转移领域。这种方法通过计算注意力然后通过解码器迁移图像的艺术风格来将样式图像转换为令牌。由于原始图像和样式图像之间的语义相似性非常低,因此导致许多细粒度的样式特征被丢弃。这可能导致不一致的人工制品或明显的文物。为了解决这个问题,我们提出了MCCSTN,这是一种新型样式表示和转移框架,可以适应现有的任意图像样式转移。具体来说,我们首先将功能融合模块(MCCFORMER)引入样式图像中的美学特征,并在内容图像中具有细粒度的特征。特征地图是通过MCCFORMER获得的。然后将功能图馈入解码器以获取我们想要的图像。为了减轻模型并迅速训练,我们考虑了特定样式与整体样式分布之间的关系。我们引入了一个多尺度的增强对比模块,该模块从大量图像对中学习了样式代表。代码将发布在https://github.com/haizhu12/mccstn