对于许多小型应用,如微电子元件、微型传感器和微系统,高容量冷却选项仍然有限。NASA 格伦研究中心目前正在开发一种微机电系统 (MEMS) 来满足这一需求。它使用热力学循环直接为热负荷表面提供冷却或加热。该设备可以严格在冷却模式下使用,也可以在几毫秒内切换冷却和加热模式,以实现精确的温度控制。制造和组装是通过半导体加工行业常用的湿法蚀刻和晶圆键合技术完成的。MEMS 冷却器的优点包括可扩展到几分之一毫米、模块化以提高容量和分级到低温、简单的接口和有限的故障模式,以及最小的诱导振动。
对机器任务的深视频压缩(DVC)的事先研究通常需要为每个特定任务培训一个独特的编解码器,从而规定每个任务的专用解码器。相比之下,传统视频编解码器采用了flex ible编码器控制器,从而通过模式预测等机制使Single编解码器适应了不同的任务。从中汲取灵感,我们引入了一个创新的编码器控制器,以用于机器的深度视频压缩。此控制器具有模式预测和一组图片(GOP)选择模块。我们的AP-ARACH在编码阶段集中控制控制,从而允许跨不同任务(例如检测和跟踪)进行适应性的编码器调整,同时与标准的预训练的DVC解码器保持合理性。示例证明我们的方法是在具有各种现有预训练的DVC的多个任务中适用的。此外,广泛的实验表明,对于不同的任务,我们的方法比以前的DVC比以前的DVC大约25%,只有一个预先训练的解码器。
摘要:人们普遍认为人为错误是不可避免的,这导致人们认识到安全干预措施不仅应针对错误管理,还应针对错误预防。在本文中,我们提出了一种培训方法,帮助操作员管理人为错误造成的后果。这种方法包括让操作员有机会在培训期间跨越安全操作的界限,并练习能够检测错误和恢复错误的解决问题的过程。为了确定培训的具体要求,我们提出了一种分析事故/事件的技术,该技术检查操作员过去跨越的界限以及他们遇到的解决问题的困难。然后可以使用这些信息来指定操作员在培训期间应该有机会跨越的界限以及他们应该练习的解决问题的过程。这种方法的初步应用令人鼓舞,并为继续在这一领域开展进一步的工作提供了动力。
在微级量表上控制pH值可能对研究,医学和行业的应用很有用,因此代表了合成生物学和微流体的宝贵应用。提出的囊泡系统将不同的颜色转化为周围溶液中特定的pH值变化。它可以与两个轻驱动的质子泵细菌紫红质和蓝色的光吸收蛋白淡淡的蛋白质Med12一起使用,它们在脂质膜上以相反的方向定向。计算机控制的测量设备实现了一个反馈循环,以自动调整和维护所选的pH值。可以建立跨越两个单元的pH范围,从而提供时间和pH分辨率。作为一个应用示例,呈pH敏感的酶反应,在浅色控制反应进展的情况下。总而言之,使用工程蛋白质体的浅色控制的pH调节为在微级别的不同情况下(例如合成生物学应用中)打开了新的可能性,以在微层尺度上控制过程。
1. 增强而非替代 人工智能应被用作增强人类创造力和生产力的工具,而不是替代我们创意团队的艺术视野或工艺。我们相信人类思想和智慧的力量,人工智能应该增强而不是削弱这种力量。 2. 透明度和道德使用 在生产过程中使用人工智能的任何行为都必须透明,特别是当它有可能影响最终产品的真实性或原创性时。当在创作过程中使用人工智能工具时,我们会坦诚地告知客户和合作者。 3. 保护知识产权和创作完整性 使用人工智能时应尊重知识产权的所有权,包括我们自己的和第三方的知识产权。人工智能生成的内容不得侵犯受版权保护的材料,并且必须严格遵守许可法和协议。
我们应对行人模拟中的内容多样性和收获性的挑战,以驱动方案。最近的行人动画框架具有重要的限制,其中他们主要关注轨迹[48]或参考视频[60]的内容,因此忽略了这种情况下人类运动的潜在多样性。这种限制限制了产生行人行为的能力,这些行为表现出更大的变化和现实动作,因此重新严格使用其用法,为驾驶模拟系统中的其他组件提供丰富的运动内容,例如,突然改变了自动驾驶汽车应响应的运动。在我们的方法中,我们努力通过展示从各种来源获得的各种人类动作(例如生成的人类运动)来超越限制,以遵循给定的轨迹。我们的框架的基本贡献在于将运动跟踪任务与轨迹结合到以下,这可以跟踪特定运动零件(例如上半身),同时遵循单个策略的给定轨迹。以这种方式,我们在给定情况下显着增强了模拟人类运动的分歧,以及内容的可控性,包括基于语言的控制。我们的框架有助于生成
摘要 — 人机交互中的手势识别是人工智能和计算机视觉领域的一个活跃研究领域。为了估计现实环境中的手势识别性能,我们收集了考虑到杂乱背景、机器人的各种姿势和运动的手势数据,然后评估机器人的性能。这涉及骨架跟踪,其中骨架数据是由通过 Microsoft Kinect 传感器获得的深度图像生成的。Kinect 捕获 3D 空间中的人体手势,并由机器人处理和复制。Arduino 控制器用于控制机器人的运动,它将来自 Kinect 传感器的关节角度输入并将其反馈给机器人电路,从而控制机器人的动作。手势识别研究的主要目标是创建一个可以识别特定人体手势并将其用于设备控制的系统。手势控制机器人将在未来节省大量的劳动力成本。这种机器人的基本优势是它具有成本效益并且不需要远程控制。
参考阅读:[1] H. Akagi,E. Watanabe 和 M. Aredes,“瞬时功率理论及其在电源调节中的应用”,IEEE Press,2007 年,第 3 章。
软机器人利用合规的材料以灵活的方式与复杂和不确定的环境相互作用,从而可以操纵脆弱的物体并与生物的安全相互作用。它们的适应性推动了医学和制造等领域的创新。设计软机器人即使对于经验丰富的设计师,由于其非线性材料,多物理耦合,多个身体与环境之间的复杂相互作用及其许多自由度,即使对于经验丰富的设计师来说也很具有挑战性。这解释了为什么软机器人技术中的第一批设计受到自然的启发,模仿了诸如蠕虫或章鱼之类的软动物。软体能够符合硬对象并重新配置DI FF任务,然后将控制的重要部分委派给身体。与刚性机器人不同,体现的智能仍然是软机器人技术中的新兴话题。但是,很明显,可以很好地适应其环境的代理商可以快速学习智能行为。本文摆脱了传统的训练控制和敏捷性的关注,旨在通过将人工智能与软机器人设计联系起来来应对控制挑战。软机器人技术领域在建模,控制和设计方面提出了许多挑战。Inria Lille的除霜团队已经开发了几种有限元方法(FEM)的工具来应对这些挑战,从而可以准确地模拟软机器人。这些工具已用于低级控制,并在制造前评估了软机器人设计。此探索需要解决一些挑战。在这项工作中,应用了各种基于FEM的仿真和数值优化工具来探索软机器人的计算设计。设计空间必须非常大,才能探索相关的设计,但也受到了足够的限制,以使优化问题可以解决。开发相关的数学适应性功能对于准确评估软机器人设计的性能和效果至关重要。鉴于计算设计算法的重要数据要求和准确模拟的计算费用,我们旨在通过选择平衡计算时间和准确性的模型或使用学习技术来加速FEM模拟来加快模拟的速度。本论文探讨了软机器人的计算设计,重点是对数值结果的模拟到真实性。解决了两个参数软操作器的设计优化,一个具有嵌入式传感器,另一个具有自动接触功能。随着控制任务,环境和设计空间变得更加复杂,计算负担增加。这激发了从FEM模拟中学到的替代模型的发展,以表征软机器人的设计和控制。通过各种情况证明了该模型的适用性,特别是对气动操纵器的嵌入式控制和软操作器的计算设计。此外,这项工作的一个关键目标是开发工具以选择软机器人设计和控制。
近年来见证了一代和重建范式深入融合的趋势。在本文中,我们扩展了可控制的生成模块的能力,以实现更全面的手网恢复任务:在单个框架中,手工网格的生成,内部网状,重建,重建和拟合,我们将其命名为H olistic H和MESH R Ecovery(HHMR)。我们的主要观察结果是,具有强大多模式可偿还性的单个生成模型可以实现不同类型的手网恢复任务,并且在这样的框架中,实现不同的任务只需要给出不同的信号作为条件。为了实现这一目标,我们提出了基于图形卷积和整体手工网状恢复的注意力卷积和注意力机制的多合一扩散框架。为了实现强大的控制能力,同时确保多模式控制信号的解耦,我们将不同的模态映射到共享特征空间并应用跨尺度随机