在当代工程和科学研究中,自动控制与机器学习之间的相互作用变得越来越重要。本报告探讨了这种关系的两个关键方面:机器学习技术以增强自动控制系统的应用以及使用自动控制原理以改善机器学习算法。首先,我们讨论如何利用机器学习来优化复杂系统中的控制策略,从而对动态环境产生适应性和智能的反应。的技术(例如增强学习和神经网络)是否有能力从数据中学习,从而产生更有效的控制机制,这些机制可以处理不确定性和非线性。其次,我们研究了如何将自动控制原理应用于完善机器学习过程。可以利用诸如反馈控制之类的概念来稳定学习算法,减少过度拟合并确保各种机器学习应用中的收敛性。这种双重视角强调了整合这两个领域而产生的相互利益和协同作用。通过案例研究和示例,我们证明了将机器学习和自动控制相结合,为机器人技术,自主系统和智能技术的进步铺平道路的变革潜力。最终,本报告旨在提供有关研究的未来方向以及合并这两个领域的实际含义的见解。
对劳动力战略的审查感谢您在去年2月对理事会的劳动力战略讨论之后的要求。我们希望专注于为更好地评估该策略的成功所采取的行动所产生的影响和差异,尽管我们谨记该战略涵盖了2027年的时期。我们感谢您和人力资源与服务中心负责人Rachael Davies协助委员会,将我们带给我们您提交的书面报告和详细信息,以帮助委员会考虑结果。您的报告阐明了2024-25财政年度对17个劳动力战略目标的进展,包括未来的行动和当前的破布状态,跨越了4个关键主题:领导力和管理;适合未来的劳动力;选择的雇主;以及员工的福祉和包容。到目前为止所提供的劳动力战略目标的结果和利益也得到了详细介绍。
描述:书目数据库,提供了高度集中的随机对照试验报告来源。记录包含作者列表,文章的标题,源,卷,问题,页码,在许多情况下,是文章的摘要(摘要)。它们不包含文章的全文。Cochrane小组维护和更新专业登记册,这些注册表是与该组相关的对照试验的集合。中央由这些专业登记册,从MEDLINE和EMBASE检索的相关记录以及通过手动搜索检索的记录(计划手动搜索期刊或会议记录,以确定所有随机对照试验和对照临床试验的报告)。Cochrane Collaboration合同合同,一家技术公司Metaxis合并了上面概述的来源的记录,并向出版商提供数据供稿。每月将新数据和更改的数据交付给发布者。
BMA7318是专为汽车HVBM,工业ESS和48 V应用而设计的锂离子电池控制器IC。它最多可以监视18个电池电池和12个温度。BMA7318具有可配置的电池电压测量的可配置平均测量,通过数字滤波,高达300 mA的机上平衡以及集成电流测量值,该设备支持ISO 26262,高达ASIL C安全能力和高的完整性安全水平,直至工业SIL-2。
NXP S32E2推进域控制器概念平台的证明是一个ECU中的集成解决方案。该解决方案证明了S32E2的集成能力,同时持有系统管理器,处理器在循环(PIL),安全管理器,AWS IoT,电池管理系统(BMS),通过模拟扩展(AE)模拟(AE)模拟,CAN WATEWAWAY,BOTEWAWAY,BOOT LOACHLOADER,启动量,固件(FOTA)和EL2M Applications的电动机控制。由于功能强大的ARM®Cortex® -R52核,丰富的柔性外围设备和精心设计的隔离/虚拟化,各种应用都可以很好地发挥作用而无需干扰。此解决方案为客户提供了多功能系统,外围用法和有用库中的技术细节。用户指南详细阐述了从头开始构建所有应用程序。
这项研究研究了Lyapunov的传播,吸收和结构障碍之间的动态关系,以利用光子晶体中的定位现象。我们研究系统的系统,其中一个双层引入障碍的重分索引的随机变化,而缺陷层具有与λ型原子的不均匀掺杂,并且可以使有效的折射指数的相干调节。相干控制允许在无序方案中积极调整吸收,Lyapunov指数和定位特征。在吸收和lyapunov spec中,对于带隙和带缘频率观察到了显着的对比,突出了不同的定位行为。这些发现提高了对无序系统中光 - 物质相互作用和现场定位的理解,为定制的光子设备提供了途径。
S32M27X是一种基于内部32位ARM®Cortex®-M7 S32K3微控制器的集成解决方案,并带有电压调节器,栅极驱动器,电流传感和LIN/CAN物理层。评估委员会可以对BLDC和PMSM控制应用程序进行快速原型和评估,而无需等待最终硬件设计。
摘要:在真核生物中,Cyclin依赖性激酶(CDKS)是DNA复制和有丝分裂的必需的,并且在整个细胞周期中,依次激活了不同的CDK-循环蛋白复合物。普遍认为,特定的复合物需要遍历G1中细胞周期的承诺,并分别促进S期和有丝分裂。因此,根据一个流行的模型,几十年来一直占据了领域的流行模型,在细胞周期的每个阶段,针对不同底物的独特CDK – cyclin compleces固有的特定座位生成了事件的正确顺序和时间。但是,编码细胞周期蛋白和CDK的基因敲除的结果不支持此模型。通过许多最近的工作验证的替代性“定量”模型表明,CDK活性的总体水平(具有相反的磷酸酶输入)决定了S期和有丝分裂的时间和顺序。我们通过建议将细胞周期分为离散阶段(G0,G1,S,G2和M)的细分被过时且有问题,从而进一步采用了该模型。相反,我们恢复了细胞周期的“连续性”模型,并提出与定量模型的结合更好地定义了理解细胞周期控制的概念框架。
抽象的多级逆变器(MLIS)被明显地用于网格连接的系统,例如可再生能源系统和工业应用,因为它们有能力产生低质量输出波形,总谐波畸变低(THD)。与独立应用不同,这些逆变器运行的控制系统负责维持系统稳定性,网格合规性和效率。这项工作介绍了专门针对MLI在网格连接系统中应用的控制算法优化的全面研究。这项研究旨在提高重要的性能标准,同时确保有关主要的谐波波,功率因数和效率的网格代码合规性。专家控制器,例如SVPWM,MPC和混合技术,在逆变器性能中显示出大量的透支。模拟和实验数据表明,在网格连接条件下,提出的方法可以使MLI的性能增强受益。
为了克服这一挑战,研究人员使用了Terahertz Light脉冲,这种光脉冲频率远低于可见光。这些脉冲会导致电子在分子和可以操纵单个分子的专用显微镜的金属尖端之间移动,从而使团队可以去除或添加电子。这种新方法提供了一种不仅以可控方式控制激子的方法,既快速又精确,而且还可以控制其他重要的分子状态,这些状态对于化学反应,能量传递和许多其他过程至关重要。该团队还证明了人眼看不见的Terahertz Light可以在分子中转化为可见光,从而揭示了一种新颖的方式,可以通过分子能量变化将一种类型的光转化为另一种光。