1马萨诸塞州综合医院和美国马萨诸塞州波士顿的哈佛医学院; 2德国慕尼黑的路德维希 - 马克西米利人 - 大学医院; 3美国马萨诸塞州剑桥市Amylyx Pharmaceuticals,Inc。; 4个国家医院组织Higashinagoya国家医院,日本纳戈亚; 5意大利帕多瓦大学帕多瓦大学; 6加利福尼亚大学,美国加利福尼亚州旧金山; 7医院诊所De Barcelona/IDIBAPS/西班牙加泰罗尼亚巴塞罗那大学巴塞罗那大学UBNEURO研究所; 8 SorbonneUniversité,援助PublicqueHôpitauxde Paris,巴黎脑研究所 - ICM,Inserm,CNRS,CNRS,Pitié-Salpêtrière医院神经病学系,法国巴黎; 9 Edmond J. Safra计划帕金森氏病和Rossy PSP中心,大学卫生网络和加拿大多伦多多伦多大学; 10伦敦大学伦敦大学皇后广场神经病学研究所,英国伦敦; 11 Karolinska Institutet,Solna,瑞典;瑞典哥德堡大学哥德堡大学12号; 13罗伯特·伍德·约翰逊医学院,美国新泽西州新泽西州新泽西州
1内分泌学和代谢司,内科,哈利姆大学神圣心脏医院,anyang,2内分泌学和代谢司,内科,诺伊·欧尔吉医学中心,埃尔吉大学医学院,纽约大学医学司,尤尔吉大学医学院,尤尔吉医学中心,尤尔吉大学医学院3和代谢,Daegu Daegu Fatima医院内部医学系,Daegu 5,内科和代谢部门5级,Hallym University Dongtan Sacred Hospital,Hwaseong,Hwaseong 6,内分泌学和代谢部,HALLYM University Hapernosic nounidest of Intersial of Intersial Medicine of Nifentary of Nifentary of Nifentary of Nifentary of Nifentary of Nifentain of Nifentary of Nifential forsip.首尔,韩国首尔大学医学院内科学系内部分泌学和新陈代谢8分司,
指导草案 本指导文件仅供评论之用。有关本草案的评论和建议应在《联邦公报》上公布指导草案发布通知后 90 天内提交。请将电子评论提交至 https://www.regulations.gov。请将书面评论提交至食品药品管理局卷宗管理人员(HFA-305),地址:5630 Fishers Lane, Rm. 1061, Rockville, MD 20852。所有评论均应注明《联邦公报》上公布的发布通知中所列的卷宗编号。如对本草案有任何疑问,请联系 (CDER) Heather Stone,电话 301-796-2274,或 (CBER) 沟通、宣传和发展办公室,电话 800-835-4709 或 240-402-8010。
背景:认知脆弱是指临床综合征,其中身体虚弱和轻度认知障碍并存。运动认知训练和虚拟现实(VR)已被用来推出各种治疗方式,以促进老年人的健康。文献主张的是,运动认知训练和VR有效地促进老年人的认知和身体功能。但是,对认知脆弱的老年人的影响尚不清楚。目的:本研究检查了VR运动认知训练(VRMCT)对全球认知功能,身体脆弱,步行速度,视觉短期记忆,认知干扰的抑制和执行功能的影响。方法:本研究使用了多中心的,评估者盲,2-平行组随机对照试验设计。参与者是在8个老年人社区中心面对面招募的。符合条件的参与者年龄≥60岁,社区住宅具有认知能力,没有痴呆症,并且没有受到限制。在干预小组中,参与者接受了由干预主义者领导的VRMCT,每周两次进行16个小时的培训课程,持续8周。在对照组中,参与者获得了老年人社区中心提供的通常的护理,调查人员没有干扰。主要结果是全球认知功能。次要结果包括身体上的脆弱,步行速度,言语短期记忆,认知干扰的抑制和执行功能。在基线(T0)和干预后的一周(T1)收集数据。广义估计方程用于检查组,时间和相互作用(时间×组)对结果的影响。结果:总共有293名合格的参与者参加了研究。参与者的平均年龄为74.5(SD 6.8)年。大多数参与者是女性(229/293,78.2%),已完成初等教育(152/293,52.1%),已婚(167/293,57.2%),与朋友一起生活(127/293,43.3%),没有VR经验(232/293,79.5%)。在干预组中,有81.6%(119/146)的参与者参加了会议总数的80%(13/16,81%)。一定数量的参与者经历了VR疾病症状(1/146,0.7%至5/146,3%)。vrmct可有效促进全球认知功能(交互作用:p = .03),略有促进执行功能(交互作用效果:p = .07)和降低脆弱性(交互作用效果:p = .03)。这些影响对其他结果没有统计学意义。
该项目由USDA NIFA通过孵化多层研究基金分配给参与土地授予大学和其他合作伙伴的参与国家农业实验站的部分支持,其中包括:阿拉斯加大学,亚利桑那大学,布里格姆大学,加利福尼亚大学,加利福尼亚大学,康德里卡特大学,康涅狄格大学,康德尔大学,大学,大学,大学,大学,大学,大学,大学吉尔夫,夏威夷大学,伊利诺伊大学,爱荷华州立大学,堪萨斯州立大学,马里兰州大学,麦吉尔大学,密歇根州立大学,密歇根州立大学,明尼苏达州大学,美国国家 /纳州大学 - 美国国家航空航天局 - 北卡罗莱纳州肯尼迪航天中心,北卡罗来纳州北卡罗来纳州州立大学,俄亥俄州立大学,宾夕法尼亚州立大学,宾夕法尼亚大学犹他州大学,西弗吉尼亚大学,威斯康星大学,怀俄明大学。该项目的先前和正在进行的周期可能包括其他参与者。了解更多信息:controledenvilments.org/members/
本研究解决了整合可再生能源(尤其是风能)时网格稳定性的挑战。它专注于使用高级策略(例如故障电流限制器和深度学习),增强双喂养发电机(DFIG)风能系统中的瞬态稳定性。该研究包括对故障场景,模拟和解决方案评估的彻底分析,强调了维持可再生能源网格稳定性的关键需求。随着风能需求的增加,优化系统性能至关重要。许多风力涡轮机依靠DFIG,需要稳健的故障乘车。引入了一个被动故障电流限制器,以增强DFIG系统瞬态稳定性。这个没有主动控制器的限制器具有内在的弹性。该研究引入了一种新型算法,以计算最佳断层电流限制性,并在参考水平的±10%以内保持电压。瞬态稳定性通过涉及对称和不对称断层的模拟进行评估,并结合了深度学习。MATLAB/SIMULINK证实了所提出的限制器和算法在提高基于DFIG的风能系统的瞬时稳定性方面的功效。该研究强调了故障电流限制器和深度学习在无缝将可再生能源整合到电网中的作用。
事实证明,二维层状材料的氧化有利于形成氧化物/二维材料异质结构,这为低功耗电子设备的新范式打开了大门。硫化镓(II)(𝜷-GaS)是一种六方相 III 族单硫属化物,是一种宽带隙半导体,单层和少层形式的带隙超过 3 eV。其氧化物氧化镓(Ga 2 O 3)兼具大带隙(4.4-5.3 eV)和高介电常数(≈ 10)。尽管这两种材料都具有技术潜力,但原子级厚度的𝜷-GaS 的受控氧化仍未得到充分探索。本研究重点关注使用氧等离子体处理对𝜷-GaS 进行受控氧化,以解决现有研究中的重大空白。结果表明,在暴露于 10 W 的 O 2 时,能够形成厚度为 4 nm 的超薄天然氧化物 (GaS x O y ),从而形成 GaS x O y /GaS 异质结构,其下方的 GaS 层保持完整。通过将此类结构集成在金属电极之间并施加电压斜坡或脉冲等电应力,研究了它们在电阻式随机存取存储器 (ReRAM) 中的应用。所产生的氧化物的超薄特性可实现低操作功率,能耗低至每次操作 0.22 nJ,同时分别保持 350 次循环和 10 4 s 的耐久性和保持力。这些结果表明基于氧化的 GaS x O y /GaS 异质结构在电子应用,特别是低功耗存储设备中具有巨大的潜力。
本文概述了高级机器人系统的设计和开发,该系统将硬件实现与理论模拟集成在一起,以满足各种环境中多功能和用户友好的机器人解决方案的需求。解决现有机器人系统中适应性有限的问题时,我们提出了一个无线,语音和手势控制的机器人车,其集成的机器人臂能够执行复杂的任务,例如线条跟随,避免障碍物,对象操纵,对象操纵和自主导航,并在单公里范围内执行自主导航。为了提高运营效率和用户参与,本文设计了一个多功能机器人平台,将用户友好的控制接口与廉价,最先进的传感器技术集成在一起。为了实现这一目标,我们集成了各种传感器,包括用于精确距离测量的超声传感器,用于对象检测和线条跟随的红外传感器,用于控制齿轮电动机的L298电动机驱动器,用于控制机器人臂的伺服电机,用于链球控制的螺纹传感器的伺服电动机,用于链球控制的弹性传感器以及MPU6050 ACCELEREMER的距离识别途径。该系统还使用定制的蓝牙应用程序进行远程控制,NRF24L01+用于远程无线控制,以及Arduino Mega和Nano进行处理和控制功能。结果证明了该机器人在动态条件下的功能很好,并且可以在医院中使用,以帮助医疗保健专业人员,餐馆提供食品交付以及在工业环境中进行对象操纵。在现实世界中,系统的设计证明了强大的功能,从而可显着提高可访问性和操作效率。这项研究与可持续发展目标(SDGS)3(健康与福祉),9(行业,创新和基础设施)和17(目标的合作伙伴关系)保持一致。机器人部门在医疗保健环境中的潜在应用可持续发展可持续发展目标3,其对工业生产力提高SDG 9的贡献以及与科技公司的合作,以扩展和提高机器人的能力促进SDG17。
原子上薄的半导体异质结构提供了一个二维(2D)设备平台,用于产生高密度的冷,可控制的激子。中间层激元(IES),绑定的电子和孔定位于分开的2D量子井层,具有永久的平面外偶极矩和长寿命,从而可以根据需要调整其空间分布。在这里,我们采用静电门来捕获并控制它们的密度。通过电气调节IE鲜明的偏移,可以实现2×10 12 cm-2以上的电子孔对浓度。在此高IE密度下,我们观察到指示了指示IE离子化过渡的线宽扩大,而与陷阱深度无关。该失控的阈值在低温下保持恒定,但增加了20 K,与退化IE气体的量子解离一致。我们在可调静电陷阱中对IE离子化的演示代表了朝着实现固态光电设备中偶极激子冷凝物实现的重要步骤。
摘要 - 借助脑电图驱动的机械臂,意念控制假肢的梦想正在成为现实。这些非凡的设备将思维语言转化为身体动作。想象一下戴上舒适的脑电图耳机,它可以检测到运动过程中大脑产生的微妙脑电波。你的想法就像一个秘密代码,头带会拾取这些信号,并通过软件界面进行处理,然后传送到微控制器。这个界面会对大脑活动进行分类,以找到你的命令,这些命令通过充当机械臂大脑的微型电极发送到计算机。这会将你的想法转化为手臂电机的指令,电机根据收到的脑电图命令执行运动。考虑到预算和机械部件的可用性,机械臂应尽可能接近自然手臂的动作。但最终目标仍然很明确:创造一个感觉像额外肢体一样自然且易于使用的机械臂。关键词 - 机械臂、Raspberry Pi、机器学习、脑电图传感器