压力这个词用来描述人类对情绪、认知和身体挑战性体验的反应。压力反应的一个特点是自主神经系统的激活,导致对危险情况的威胁做出“战斗-冻结-逃跑”反应。因此,在处理空中交通管制 (ATC) 活动时客观评估和跟踪管制员的压力水平的能力将使我们能够更好地调整工作班次并保持高安全水平,以及保护操作员的健康。在这方面,要求 16 名管制员进行真实的空中交通管理 (ATM) 模拟,在此期间收集主观数据(即压力感知)和神经生理数据(即大脑活动、心率和皮肤电反应),目的是准确描述管制员在各种实验条件下所经历的压力水平。此外,外部主管定期评估管制员在整个 ATM 场景中表现出的压力、安全性和效率。结果表明:1)压力事件导致主管和控制员低估所经历的压力水平;2)同时考虑认知和激素过程有利于定义可靠的压力指数;3)测量压力的时间点非常重要,因为一旦压力事件发生,可能会产生短暂的影响。
摘要:近年来大脑 - 机器界面(BMI)取得了显着进步。但是,仍然有几个应用领域需要改进,包括在虚拟现实(VR)模拟过程中对身体运动的准确预测。要获得高水平的浸入VR会话,重要的是要进行双向相互作用,这通常是通过使用移动跟踪设备(例如控制器和身体传感器)来实现的。但是,通过直接通过脑电图(EEG)记录直接从运动皮层获取运动信息来消除对这些外部跟踪设备的需求。这可能会导致更多无缝和身临其境的VR体验。有许多研究调查了运动期间的脑电图记录。这些研究大多数都集中在基于大脑信号的运动预测上,但其中少量的重点是在VR模拟过程中如何利用它们。这表明仍然需要在该领域进行进一步研究,以便充分了解使用脑电图预测VR模拟运动的潜力。我们提出了两个神经网络解码器,旨在根据在本研究中执行VR模拟任务期间记录的大脑活动预测前臂移动和武器移动行为。对于两个解码器,我们都采用了长期的短期内存模型。该研究的发现非常令人鼓舞,这是该技术具有替代外部跟踪设备的前提的借助。
ESP-TM2控制器设计为易于使用的,基于程序的控制器,具有熟悉的ESP用户界面,大型LCD屏幕和控制器覆盖和LCD上的通用图标。ESP-TM2控制器仅需两个螺钉即可易于壁挂。对于专业安装,它具有½“或¾”导管的指南,可以将电线运行到设备中。
第1章Compactlogix 5370控制器概述CompactLogix 5370控制系统组件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14控制器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15在以太网/IP网络上对集成运动的支持。。。。。。。。。。。。。。。。。16电子键合。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17更多信息。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17示例系统配置。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18以太网 / IP网络。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 Devicnet网络。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。20
深脑刺激(DBS)通过将电脉冲传递到大脑的基底神经节(BG)区域来治疗由帕金森氏病(PD)引起的运动症状的巨大希望。但是,美国食品药品监督管理局(FDA)批准的DBS设备只能以固定幅度提供连续的DBS(CDB)刺激;这种效率低下的操作可降低设备的电池寿命,无法动态地适应活动,并且可能引起严重的副作用(例如步态障碍)。在这项工作中,我们引入了一个离线增强学习(RL)框架,允许使用过去的临床数据来训练RL政策以实时调整刺激幅度,目的是减少能源利用,同时保持相同的治疗水平(即,控制)功效为CDB。此外,临床原型要求在患者部署之前证明此类RL控制器的安全性和性能。因此,我们还引入了一种离线政策评估(OPE)方法,以在对患者进行部署之前使用历史数据估算RL政策的性能。我们对配备RC+S DBS系统的四名PD患者进行了评估,在每月临床就诊期间采用RL控制器,并通过症状严重程度评估了整体控制功效(即,Bradykinesia和Tremor),PD生物制造商的变化(即,本地现场电位)和患者评分。临床实验的结果表明,我们的基于RL的控制器保持与CDB相同的控制功效水平,但刺激能量显着降低。此外,OPE方法在准确估算和对RL控制器的预期回报方面有效。
摘要- 在全球能源转型过程中,电力基础设施正以前所未有的速度发生根本性变化。由于电网整合可再生能源以及电动汽车等可变负载的影响,现有电网越来越多地处于接近其技术和热极限的运行状态。大多数现有网络的设计都不适合在当今条件下运行。配电网运营商正在采取措施,使其网络符合电网规范,同时考虑到整合可变配电发电和消费单元以实现气候目标的压力。在发电和消费波动性大的情况下运营配电网是一项艰巨的任务。智能变压器、电池存储系统和先进的负载和发电控制器等新技术已经出现,以帮助减轻分布式可再生能源和可变负载的影响,但已有技术(如带载分接开关)也可以为增加可变可再生能源的承载能力提供非常有效的解决方案,正如本文所证明的那样。仿真结果表明,负荷开关与智能控制器相结合可以将配电馈线的承载容量提高 1.92 倍,而过电压是分布式可再生能源接入的主要制约因素。
ESP-TM2 控制器设计为易于使用的基于程序的控制器,具有熟悉的 ESP 用户界面、大型 LCD 屏幕以及控制器覆盖层和 LCD 上的通用图标。ESP-TM2 控制器仅需两个螺钉即可轻松安装在墙上。对于专业安装,它有一个 ½“ 或 ¾” 导管导轨,用于将现场电线引入设备。
摘要:可编程逻辑控制器(PLC)构成了关键基础设施(CIS)和工业控制系统(ICS)的重要组成部分。它们具有定义如何驱动和操作关键过程的控制逻辑,例如核电站,石化工厂,水处理系统和其他设施。不幸的是,这些设备并不完全安全,并且容易受到恶意威胁,尤其是那些利用PLC控制逻辑中的漏洞的设备。这些威胁称为控制逻辑注射攻击。他们主要旨在破坏由裸露的PLC控制的物理过程,从而造成对目标系统的灾难性损害,如Stuxnet所示。回顾过去十年,许多研究努力探索和讨论这些威胁。在本文中,我们介绍了与控制逻辑注射攻击有关PLC的最新作品。为此,我们根据三种主要攻击方案的攻击者技术为安全研究界提供了新的系统化。对于本工作中介绍的每项研究,我们概述了攻击策略,工具,安全目标,受感染的设备和潜在的漏洞。基于我们的分析,我们强调了当前保护PLC免受这种严重攻击的安全挑战,并建议对未来的研究方向提出安全建议。
摘要 我们的目标是识别空中交通管制应用领域的图像图式隐喻 (ISM),从而了解管制员的心理模型。通过在管制员的口语中标记 ISM,我们识别出表示空中交通三个视角的隐喻,即 (1) 飞机物理位置和飞行路径的地理视角,(2) 空中交通责任的隐喻实例化分布,以及 (3) 指代空中交通管理组织级别的隐喻。我们讨论了可能对设计连贯界面构成特殊挑战的目标域,因为它们映射到多个源域,有时与物理映射相竞争。我们的主要初步贡献是一份隐喻实例列表,作为未来空中交通管制环境中创新但直观易用的界面原型的基础。