摘要:本文介绍了一个离网混合能源系统的能源管理策略。混合系统由光伏(PV)模块,一个LifePo4电池组与电池管理系统(BMS),混合太阳能逆变器和负载管理控制单元组成。实施了长期短期内存网络(LSTM)的预测策略,以预测可用的PV和电池电量。学习数据是从具有热带气候的非洲国家提取的,这非常适合PV Power应用。使用LSTM作为预测方法显着提高了预测的效率。提出的策略的主要目标是根据系统的预测能量可用性和预测的电池电荷状态(SOC)来控制不同的负载。使用MATLAB/SIMULINK软件测试了建议的管理算法和系统。一项比较研究表明,与没有负载管理的系统相比,系统的能量降低约为53%。除此之外,随着电源供应概率(LPSP)的损失从5%降低到3%,系统的可靠性得到提高。
摘要 制造业(尤其是汽车行业)的客户对个性化产品的需求很高,而其价格水平与传统大规模生产相当。提供各种产品和以最低成本运营的目标与此相反,因此引入了基于混合模式装配线稳定订单顺序的高度生产计划和控制机制。这一发展面临的主要威胁是顺序混乱,它是由操作和产品相关的根本原因引发的。尽管引入了准时制和固定生产时间,但汽车行业的顺序混乱问题仍然没有得到部分解决。负面的下游影响包括准时制供应链中断,以及生产过程中断。在早期阶段精确预测顺序偏差允许引入对抗措施,在出现混乱之前稳定顺序。虽然程序原因在研究中得到了广泛解决,但手头的工作需要从不同的角度来考虑产品相关的观点。基于来自现实世界全球汽车制造商的独特数据,对监督分类模型进行了训练和评估。这包括设计、实施和评估 AI 工件的所有必要步骤,以及数据收集、预处理、算法选择和评估。为了确保长期预测稳定性,我们包括一个持续学习模块来应对数据漂移。我们表明,最多 50% 的主要偏差可以提前预测。但是,我们不考虑任何与过程相关的信息,例如机器状况和轮班计划,而只关注产品特征的利用,例如车身类型、动力传动系统、颜色和特殊设备。
Sie verfügen über eine abgeschlossene einschlägige Berufsausbildung oder ein Bachelorabschluss im betriebswirtschaftlichen Bereich。 Sie haben umfangreiche Fachkenntnisse in Microsoft Excel 和 grundlegende Anwendungskenntnisse in übrigen Office-Anwendungen (PowerPoint, Word)。 Dazu besitzen Sie hohe Zahlenaffinität。 Sie können souverän auf Deutsch (mind. C1 nach dem Europäischen Referenzrahme) kommunizieren。 Auch einfachere Gespräche auf Englisch (mind. B1 nach dem Europäischen Referenzrahme) bereiten Ihnen keine Mühen und Sie sind bereit, sich fachliche Begriffe auf Englisch anzueignen. Sie haben Freude an der Arbeit in einer serviceorientierten Verwaltung。 Sie verfügen über die kommunikativen Fähigkeiten, um als Expert*in auf Ihrem Gebiet Kolleg*innen und unsere Wissenschaftler*innen zu beraten。作为 Teamspieler* 在 arbeiten Sie jederzeit kollegial und kooperativ 中。
Björn Fägersten(首席研究员),瑞典国际事务研究所欧洲项目高级研究员。Ulla Lovcalic(分析师),瑞典国际事务研究所欧洲项目分析师。Anna Lundborg Regnér(分析师),瑞典国际事务研究所欧洲项目分析师。Swapnil Vashishtha(分析师),瑞典国际事务研究所欧洲项目分析师。本 UI 报告基于欧洲项目的研究,由瑞典国防物资管理局 (FMV) 和瑞典工程工业协会 (Teknikföretagen) 提供资金支持。报告中表达的观点和意见均为作者的观点和意见。
合成的DNA/RNA链是出色的工程材料,用于开发纳米版和纳米机器,可以在传感中找到应用,1个药物输送,2个成像3和分子运输。4 Watson-Crick – Frank-Lin碱基配对的高可编程性,以及相互作用的可逆性以及将其用作多功能分子支架的可能性,使合成DNA特别适合设计精确的纳米级结构。2 B,5,6基于DNA的纳米器件通常是通过理性设计的 - 可识别特定分子输入(例如核酸,7个小分子8或蛋白质)的特定分子输入的核酸域而开发的。9通过多种外源刺激(包括温度10
调节膜电位的工具 光遗传学最常见的用途之一是改变可兴奋细胞的膜电位。在神经元中,膜去极化会导致瞬态电信号(脉冲)的激活,这是神经元通讯的基础。相反,膜超极化会导致这些信号的抑制。控制操作这些电流的“开关”使神经科学家能够研究神经元在功能上如何相互关联以及神经元回路如何控制行为。通过外源表达改变神经元膜电位的光激活蛋白,光可以用作开关。一种方法是使用化学修饰的所谓“笼状配体”,这些配体在光刺激下变得活跃并与通过基因引入特定神经元的外源性受体结合。配体也可以通过充当光开关的光敏化合物与受体本身相连。在这两种情况下,都必须将光敏的可溶性或束缚配体注入细胞或组织,使它们对光敏感。或者,可以使用编码光敏蛋白(如视蛋白)的天然基因。这些光敏跨膜蛋白与发色团视网膜共价结合,视网膜吸收光后发生异构化(例如,从反式变为顺式构型),从而激活蛋白质。值得注意的是,视网膜化合物在大多数脊椎动物细胞中含量充足,因此无需注入外源分子。第一个利用视蛋白进行哺乳动物神经元光学控制的遗传编码系统是通过外源表达果蝇的三基因系统建立的。表达这些蛋白质的神经元对光的反应是数秒内的去极化和尖峰波。最近发现,微生物中的视蛋白(将光敏域与同一蛋白质中的离子通道或泵相结合)也可以调节神经元信号,通过在单个易于表达的蛋白质中提供更快的控制,彻底改变了该方法。这些神经元开关中的第一个使用了通道视紫红质-2 (ChR2)。当在神经元中表达并暴露于蓝光时,这种非选择性阳离子通道会立即使神经元去极化
内核回归或分类(也称为机器学习中的加权ϵ -NN方法)对它们的简单性有吸引力,因此在数据分析中无处不在。ever,内核回归或分类的实际实现包括量化或子采样数据以提高时间效率,通常是以预测质量为代价。尽管在实践中有必要进行这种交易,但它们的统计含义通常尚未得到充分的了解,因此实际实施的实施很少。特别是尚不清楚是否可以维持内核预测的统计准确性(在某些应用中至关重要),同时改善预测时间。目前的工作提供了将内核预测与数据量化相结合的指导原则,以确保预测时间和准确性之间的良好贸易,尤其是为了近似维持香草内核预测的良好准确性。此外,我们的贸易保证是根据调整参数明确处理的,该调整参数可以作为旋钮,该旋钮根据实际需求而定于时间或准确性。在旋钮的一端,预测时间与单个最近邻居预测的顺序相同(在统计上是不一致的),同时保持一致性;在旋钮的另一端,预测风险几乎是最小的(就原始数据大小而言),同时仍降低时间复杂性。理论结果在来自一系列现实世界应用域的数据上得到了验证;特别是我们证明了理论旋钮的性能如预期的。因此,分析揭示了数据定量化方法与内核预测方法之间的相互作用,最重要的是,显式地控制了对从业者的贸易,而不是提前或使其不透明。
为了克服这一挑战,研究人员使用了Terahertz Light脉冲,这种光脉冲频率远低于可见光。这些脉冲会导致电子在分子和可以操纵单个分子的专用显微镜的金属尖端之间移动,从而使团队可以去除或添加电子。这种新方法提供了一种不仅以可控方式控制激子的方法,既快速又精确,而且还可以控制其他重要的分子状态,这些状态对于化学反应,能量传递和许多其他过程至关重要。该团队还证明了人眼看不见的Terahertz Light可以在分子中转化为可见光,从而揭示了一种新颖的方式,可以通过分子能量变化将一种类型的光转化为另一种光。