摘要 本教程将讨论数据中心/服务器以及 AI 和机器学习系统中使用的 48V 至 0.7V (2,000A) 电源转换器所面临的挑战和解决方案。将讨论和比较两种电源架构。第一种架构是两级架构,其中 48V 转换为 12V(或另一个中间电平),然后将 12V 转换为 0.7V。第二种架构是“单级”,其中 48V“直接”转换为 0.7V。使用“直接”转换架构,无法访问(可见)中间电压总线。在简要介绍广泛应用于数据中心、服务器等的 OAM(OCP 加速器模块)的背景信息和功率要求之后,本教程将提供对降低功率损耗和提高功率密度的技术的新认识。本教程将首先回顾两级架构的最新技术并评估其优点和局限性。然后,本教程将回顾“单级”架构的最新技术并评估其优缺点。基于上述分析和回顾,本教程将提出并讨论 48V 至 0.7V(低至 0.3V)、2,000A(或更高)的应用研究方向,以实现极高的效率、极小的尺寸和电流共享、可扩展、快速动态响应等。
制服政策和计划更新 - 2024 年 2 月 NAVADMIN 031/24 | 情况说明书 本 NAVADMIN 宣布了海军制服政策的更新。这些更新是根据水手的反馈、指挥部赞助的请求和海军领导层的指示得出的。政策更新包括授权将手放在制服口袋和体能训练服的紧身裤中,以及恢复女性可选的晚礼服头饰和女性可选的组合罩(桶形)。正在进行的举措包括继续为怀孕水手提供免费制服的产妇试点计划、尺寸现代化计划和制服调查。阅读 NAVADMIN 031/24 以获取完整的更新列表。战士的坚韧,锻炼你的思想、身体和精神
可扩展的内部电池备份可通过停电专用ABM+技术使您的操作可改善预测性电池更换分析,从而更好地查明您应该何时更换UPS电池。通过添加此预测算法,您可以根据现实使用寿命和条件确定预期的电池故障日期。这可以防止等待太久而不必要的费用引起的意外停机时间,这过早地替换了。ABM+还可以优化充电,以提高电池寿命高达50%。您最多可以连接12个扩展电池模块(9pxebm180rtg2,单独销售),以在延长停电期间添加必要的运行时。
摘要 - 痴呆症是一种渐进疾病,会损害个人的认知健康和日常功能,而轻度认知障碍(MCI)通常是其前体。对MCI到止血转换的预测进行了充分的研究,但是以前的研究几乎一直集中在传统的机器学习(ML)(基于基于的方法)上,这些方法可以重新分享敏感的临床信息以培训预测模型。本研究提出了一种使用联邦学习(FL)进行隐私增强解决方案,以训练MCI-to-Dementia转换的预测模型,而无需共享敏感数据,掌握社会人口统计学和认知指标。我们模拟并比较了两个网络体系结构,即点对点(P2P)和客户端服务器,以实现协作学习。我们的结果表明,FL具有与集中式ML相当的预测性能,并且每个临床部位在没有共享本地数据的情况下显示出相似的表现。此外,FL模型的预测性能优于未经协作的训练的特定地点模型。这项工作强调了FL可以消除对数据共享的需求,而不会损害模型功效。
在此方案中,我们描述了一种将质粒DNA转化为DNA微圆的新方法,该方法仅由转基因序列组成。这种方法利用了质粒的可伸缩性,同时使用标准分子生物学方法将体外转化率转化为微圆,从而规定了对特殊生产细菌菌株的需求。
国家理工学院(NIT)PATNA是印度最历史性技术机构之一,它的根源可以追溯到1886年,当时它是辩护人的调查培训学校。随着时间的流逝,它于1924年演变成比哈尔工程学院的Patna学院,使其成为该国第六大的工程学院。2004年1月28日,该学院被重新归为NIT PATNA,成为印度政府教育部下的第18届国家技术研究院。nit Patna一直是一个多世纪以来技术教育的先驱,提供了本科(UG),研究生(PG)和工程,技术,科学和人文学科的博士学位课程。该研究所扩大了其研究生水平的产品,以包括1978年的博士课程,进一步加强了其学术组合。位于恒河恒河的南岸,位于帕特纳的标志性甘地盖附近,该研究所既是学术卓越和文化意义的象征。努力纳特·帕特纳(Nit Patna)的任务是设定高标准和研究,因此积极参与研发(R&D),突破了各个领域的创新界限。它以其悠久的学术卓越记录而享有盛誉。
摘要:我们在本文中提出了一个新概念,以基于一种称为有向光氧化诱导的转化(DPIC)的机制产生双色光转换探针。作为对这种机制的支持,含有芳香的单重氧反应性部分(如呋喃和吡咯)的苯乙烯香豆素(SC)已合成。sc是明亮的荧光团,由于ASORM的定向光氧化而导致可见光的光辐射,它会在可见的光照射下进行高营养转化,从而导致共轭破坏。sc-p,带有吡咯部分的黄色发射探针,转换为稳定的蓝色发射香豆素,具有68 nm的偏移,从而使光转换和跟踪活细胞中的脂质液滴跟踪。这种新方法可能会为新一代的光转换染料铺平道路,用于高级生物成像应用。
摘要:生命系统一方面能够对不断变化的环境做出协调反应(也称为适应),另一方面能够自我繁殖。值得注意的是,适应环境变化需要监测周围环境,而繁殖则需要监测自身。这两项任务看似独立,使用的信息来源也不同。然而,适应过程和繁殖过程都与基因组 DNA 表达的变化密不可分,而细胞则表现为一个不可分割的整体,其中看似独立的过程和机制既相互整合又相互协调。我们认为,在最基本的层面上,这种整合是由 DNA 的独特属性实现的,DNA 是一种双重编码装置,包含两种逻辑上不同类型的信息。我们回顾了不同复杂程度的生物系统,并推断这两种不同类型的 DNA 信息的相互转换代表了一种基本的自参考装置,是系统整合和协调适应反应的基础。