摘要 - 无孔的能量收获设备是一类新的嵌入式系统,可从存储在环境友好的电容器中的环境能量运行,并保证持久的持久,无维护的操作。由于紧密的能量构成,这些设备经常采用电压转换器和专用的集成电路(ICS),以最大程度地传输能量收割机,存储电容器和负载之间。正如我们在本文中所显示的那样,这种转换器电路的选择和配置很重要,但是非平凡,因为它们的性能高度取决于能量收集条件。因此,我们提供了五个现成的能源收集IC的模型,并将它们集成到无电池系统的开源模拟器中:这使从业人员和研究人员可以方便地探索设计权衡并预测可实现的性能。此外,我们使用这些模型对不同转换器体系结构进行系统比较,并得出具体建议。
Power Solutions 为商业航空航天、国防和太空提供 ELDEC、Interpoint 和 Keltec 品牌的电源转换、配电和电池系统,用于航空电子设备、ATA 第 24 章电源系统、通信、电子对抗、导弹、雷达、导航、制导和公用系统。我们的电源产品以高性能和高可靠性而闻名,在军事/国防、航空航天、空间和工业应用中具有公认的性能。从模块化电源到定制设计的电源子系统,我们都能满足您的需求。我们提供的电源产品包括定制、半定制或现成产品。我们的质量体系确保可靠、可重复的流程和性能。
摘要 - 在本文中,我们通过分析使用网格连接转换器的瞬态稳定性,该转换器具有网格形成的com-prec-per-per-proop Control,也称为可调节的虚拟振荡器控制。从理论上讲,我们证明复杂的下垂控制是一种最先进的网格形成控制,始终具有稳定的状态平衡,而经典的下垂控制则没有。我们在网格干扰下为复杂的下垂控制瞬态稳定性(全球渐近稳定性)提供了定量条件,这超出了经典下垂控制的局部局部(非全球)稳定性。对于复杂下垂控制的瞬时不稳定性,我们揭示了不稳定的轨迹是有界的,表现为极限循环振荡。此外,我们将稳定性从二阶网格形成控制动力学扩展到全阶系统动力学,这些动力学还涵盖电路电磁瞬变和内环动力学。我们的理论结果有助于深入了解复杂下垂控制的瞬态稳定性和稳定性,并为参数调整和稳定性保证提供了实用的指南。
• 全球波浪能生产潜力估计为 29,500 TWh,几乎是欧洲年用电量的十倍。• 这是尚未开发的潜力,可以使可再生能源格局多样化,从而满足小岛屿发展中国家的能源安全和能源需求。小岛屿发展中国家拥有自己的可再生能源有利于降低能源价格,使每个人都能负担得起。• 小岛屿发展中国家实施波浪能的主要限制因素是政策制定者和技术人员的技能和知识短缺,以及缺乏有关波浪能生命周期和生物多样性影响的数据和研究。• 波浪能每兆瓦可创造 10-12 个工作岗位,是风能的五倍。• 利益攸关方在波浪能部署方面的合作是增加波浪能项目和降低小岛屿发展中国家能源成本的关键。
Yehya I. Mesalam 沙特阿拉伯北部边境大学工程学院工业工程系 | 埃及扎加齐格大学工程学院工业工程系 yehya.mesalam@nbu.edu.sa | ymesalam@yahoo.com Shaaban Awdallh 沙特阿拉伯北部边境大学工程学院电气工程系 | 埃及梅努菲亚大学工程学院工程基础科学系 shaban.awdallah@nbu.edu.sa Hajer Gaied 突尼斯加贝斯大学加贝斯国家工程学院 hajer.giaed@yahoo.fr Aymen Flah 过程、能源、环境和电气系统(代码:LR18ES34),突尼斯加贝斯大学加贝斯国家工程学院 | 约旦安曼中东大学 MEU 研究部门 | 沙特阿拉伯吉达 21448 商业与技术大学(UBT)工程学院 |突尼斯加贝斯私立高等应用科学与技术学校、加贝斯大学 | 应用科学研究中心、应用科学私立大学,安曼,11931,约旦 flahaymening@yahoo.fr(通讯作者)
摘要 - 通过利用亚波长等离子设备来实现紧凑的光学整合电路,需要设计紧凑和有效的光子对等离激元模式转换器的设计。尤其是对于需要多个转换器的等离子多输入设备,例如逻辑门,可以在很大程度上通过光子波导将足迹构成,这应该在设计中考虑。在这项工作中,我们为应用多输入等离子体设备的应用模拟和基准五个Photonic to for等离子体模式转换器拓扑。我们的设计包括等离子波导的定向和末端耦合方案,以及线和插槽构造的Si光子波导。考虑到光子波导和等离子波导,总足迹以及模式转换效率之间的音高不匹配,我们优化了转换器的性能。
许多最新标准都针对相对较短距离内的高数据速率通信,例如未授权 60GHz 频段的 IEEE802.11ay 标准。典型应用是视频流、无线对接等高数据速率应用的电缆替代……或者,通过利用大规模天线阵列,还可以实现小型蜂窝回程和固定无线接入等应用。毫米波频率也用于高分辨率雷达系统(例如在未授权的 79GHz 频段),从而实现小型、低成本和低功耗的解决方案。所有这些应用的共同点是它们使用相对简单的调制方案和非常宽的通道带宽,从而对模数转换器的分辨率和采样率要求非常高。
电动汽车由于其巨大的环境利益以及减少对化石燃料的依赖的潜力而变得越来越流行。它们产生零直接排放,这可以帮助减轻空气污染并减少温室气体排放,从而促进应对气候变化的努力。电动汽车(EV)是一款由一个或多个电动机供电的汽车,使用存储在可充电电池或其他储能设备中的能量。与在汽油或柴油机上运行的传统内燃机车辆不同,电动汽车是由电动电动机推动的,电动汽车储存在车载电池中。在电动汽车中,转换器是必不可少的组件,可促进各种电气系统的高效和可靠运行。转换器的主要功能是将直流电流(DC)功率转换为交流电(AC)功率,反之亦然,具体取决于特定组件的要求。转换器对于电动汽车中的有效操作至关重要。他们将高压直流电源从电池转换为电动机的交流电源,从而使车辆推进。转换器还管理功率流,调节电压并通过再生制动为能量再生做出贡献。他们的高级功能,例如控制算法和通信界面,提高了电动汽车操作的总体效率,可靠性和安全性。
摘要:本文介绍了一种用于光伏系统的三相交错升压转换器的突破性设计,利用并联的传统升压转换器来降低输入电流和输出电压纹波,同时提高动态性能。这项研究的一个显着特点是将锂离子电池直接连接到直流链路,从而无需额外的充电电路,这与传统方法不同。此外,MPPT 控制器和闭环模糊控制器与电流控制模式的组合可确保为所有三个相位生成准确的开关信号。精心调整的系统在输出电压中表现出非常低的纹波含量,超过了计算值,并表现出卓越的动态性能。研究延伸到对损耗的全面分析,包括电感器铜损和半导体传导损耗。在所有情况下,转换器的效率都超过 93%,凸显了其作为光伏系统有效解决方案的强大性能。
人们要求储能系统在电网现代化过程中发挥主导作用 [1-4]。可再生能源 (RES) 的广泛应用以及工业过程的深度电气化对电网提出了重大挑战 [5-11],而大量使用储能系统 (ESS) 可以缓解这一转变。然而,发电和配电中心等电力设施通常并未设计为包含储能,这会导致一些缺点。此外,由于电力电子主导的电网惯性减小,匹配发电和消费的复杂性日益增加 [2、12、13]。为了提高可控性、平稳需求响应、减少能源浪费和电网增强的需要,储能系统是现代电网中必不可少的资产 [13-17]。另一方面,储能系统在微电网概念中也至关重要,微电网概念经过几十年的发展,已经能够适应电网中快速变化的负载和发电机 [18-20]。利用电力电子技术将电力系统聚集成可控、可拆卸的块,可以实现可再生能源、储能系统和负载的分布式集成,并且独立于电网。因此,开发新型集成电力转换器和储能单元仍然是未来电力系统的关键方面之一。为了进一步提高储能系统的能力,可以将不同的储能技术组合成混合储能系统。通过混合超级电容器、电容器和电池,甚至非基于电力的储能机制,可以根据场景利用不同的特性,例如高能量和高功率密度 [21,22]。
