本文旨在详细研究非反相降压-升压转换器的评估和特性。为了改善降压-升压转换器在三种工作模式下的行为,我们提出了一种基于峰值电流控制的架构。使用三模式选择电路和软启动电路,该转换器能够扩大功率转换效率并减少反馈回路的浪涌电流。建议的转换器设计为以可变输出电压运行。此外,我们使用导通电阻低的 LDMOS 晶体管,这适用于 HV 应用。结果表明,与其他架构相比,所提出的降压 - 升压转换器的性能更完美,并且它使用 0.18 µ m CMOS TSMC 技术成功实现,输出电压调节为 12 V,输入电压范围为 4-20 V。在负载电流为 4 A 时,降压、升压和降压-升压三种工作模式的功率转换效率分别为 97.6%、96.3% 和 95.5%。
1 威斯康星大学密尔沃基分校可持续电能系统中心,美国密尔沃基 2 土耳其安卡拉加齐大学技术学院电气与电子工程系 jeanpie4@uwm.edu;aie@uwm.edu;naltin@gazi.edu.tr;nasiri@uwm.edu 收稿日期:2020 年 4 月 10 日 接受日期:2020 年 6 月 22 日 摘要 - 近年来,用于并网应用的结合光伏 (PV) 系统和集成储能的分布式发电厂的研究兴趣日益增加。然而,多种能源的组合需要大量的 DC-DC 转换器,因此变得更加复杂。为了解决这个问题,本研究提出了一种用于并网应用的多端口双向 DC-DC LLC 谐振转换器。为了最大限度地降低所提系统的控制复杂性,还开发了一种基于区域的控制器方法,该方法集成了基于增量电导法的改进最大功率点跟踪 (MMPPT) 方法。该控制器能够在从公用电网输送或获取电力时调节转换器电压和功率流。本研究中介绍的转换器包含一个双向降压-升压转换器和一个 LLC 谐振转换器,以及一个电压源并网逆变器。它们都与 PV、电池和公用设施连接。通过 MATLAB/Simulink 进行的大量仿真分析证明了所提拓扑的运行。
摘要——随着高速、高精度、低功耗混合信号系统的出现,对精确、快速、节能的模数转换器 (ADC) 和数模转换器 (DAC) 的需求日益增长。不幸的是,随着 CMOS 技术的缩小,现代 ADC 在速度、功率和精度之间进行权衡。最近,已经提出了四位 ADC/DAC 的忆阻神经形态架构。可以使用机器学习算法实时训练此类转换器,以突破速度-功率-精度权衡,同时优化不同应用的转换性能。然而,将此类架构扩展到四位以上具有挑战性。本文提出了一种基于四位转换器流水线的可扩展模块化神经网络 ADC 架构,保留了其在应用重新配置、失配自校准、噪声容忍和功率优化方面的固有优势,同时以延迟为代价接近更高的分辨率和吞吐量。 SPICE 评估表明,8 位流水线 ADC 可实现 0.18 LSB INL、0.20 LSB DNL、7.6 ENOB 和 0.97 fJ/conv FOM。这项工作朝着实现大规模神经形态数据转换器迈出了重要一步。
nagpur摘要:随着传统能源的减少,风能和太阳能等可再生能源对于可持续发电至关重要。这些来源的间歇性质意味着它们的输出必须经过条件以满足电网要求,通常是通过电源转换器。当前系统将单独的转换器用于风和太阳能,从而导致较高的组件计数和效率低下。建议的系统使用四端口转换器集成了各种能源:两个输入端口和太阳能,一个双向存储端口,一个是孤立的负载端口。通过采用零电压切换,系统降低成本,改善电源流量,并确保可再生资源与网格无缝集成。此设置允许家庭用户,网格和分布式生成单元之间更智能的功率流。可将转换器的最终直流电压直接用于直流负载,也可以转换为AC以供家庭使用,优化效率和资源使用。关键字:可再生能源集成,四端口转换器,零电压开关,灵活的输出等。
ADS5410 是一款 12 位 ADC。其低功耗(360 mW)和 80 Msps 的高采样率是通过使用基于先进低压 CMOS 工艺构建的先进开关电容流水线架构实现的。ADS5410 模拟核心主要采用 3.3 V 电源供电,消耗大部分电量。数字核心采用 1.8 V 电源供电。如果设计中没有 1.8 V 电源,则可以使用 TPS76318 从 3.3 V AVDD 电源获取 1.8 V。为了增加接口灵活性,数字输出电源 (OV DD ) 可以设置为 1.6 V 至 3.6 V。ADC 核心由 10 个流水线级和一个闪存 ADC 组成。每个级产生 1.5 位。上升时钟沿和下降时钟沿都用于每半个时钟将样本通过流水线传输一次,总共六个时钟周期。
本应用说明介绍了一种设备,其最初设计用于解决在仅有正电源可用时需要负电源的特定问题。这种情况非常常见,例如,在使用动态 RAM 的系统中,三电源设备需要大约 -5V 的低电流体偏置电源。在具有大量数字逻辑(+5V)但包含使用 A/O 转换器(例如 ICL7107 或 ICL7109 和/或运算放大器和比较器)的小型模拟部分的系统中,也需要负电源电压,这些转换器以接地为参考信号运行。在所有这些情况下,电流要求和调节都不是很苛刻,但尽管如此,产生这样的 -5V 电源通常成本高昂且效率低下。通常,需要大量分立和集成电路元件将公共 +5V 线路转换为负线路,或向主电源、背板布线等添加额外的输出。
CA-IS3211 器件是一系列单通道、光电兼容隔离栅极驱动器,能够吸收 5A 电流并提供 6A 电流。这些器件采用双电源或高达 30V 的单电源供电,电压范围为 V CC - V EE ,非常适合驱动各种逆变器、电机控制或隔离电源系统中的功率 MOSFET、IGBT 或 SiC 晶体管。CA-IS3211 可配置为低侧或高侧驱动器。所有器件都采用 Chipanalog 专有的电容隔离技术,集成数字电流隔离,隔离耐压额定值为 5.7kV RMS,持续 60 秒,最小共模瞬变抗扰度 (CMTI) 为 150kV/μs。这些设备可以用于替代行业标准的基于光耦合器的栅极驱动器,同时提供高 CMTI、低传播延迟(典型值 70ns)、小脉冲宽度失真(最大值 35ns)和小部件间偏差。
ADS5410 是一款 12 位 ADC。其低功耗(360 mW)和 80 Msps 高采样率是使用基于先进低压 CMOS 工艺构建的最先进的开关电容流水线架构实现的。ADS5410 模拟核心主要由 3.3 V 电源供电,消耗大部分电量。数字核心由 1.8 V 电源供电。如果设计中没有 1.8 V 电源,则可以使用 TPS76318 从 3.3 V AVDD 电源获取 1.8 V。为了增加接口灵活性,数字输出电源 (OV DD ) 可设置为 1.6 V 至 3.6 V。ADC 核心由 10 个流水线级和一个闪存 ADC 组成。每个阶段产生 1.5 位。每半个时钟周期,上升沿和下降沿都用于将样本通过管道传播,总共六个时钟周期。
电力电子转换器是一种利用一个或多个功率半导体、磁性元件、电容器、控制电子设备和其他必要的辅助元件来转换电能(电流、电压、频率)的机器。
本文研究并分析了 SIMULIK 环境下基于绝缘栅双极晶体管 (IGBT) 和脉冲宽度调制 (PWM) 技术的通用桥式转换器。为了实现三相 AC/DC 转换器的 PWM 控制器,研究并开发了空间矢量调制的基础。这种转换在许多有源条件下的有效进展取决于所应用的方法。所提出的程序方法的强大之处在于本文所检查的电流失真和开关频率。脉冲宽度第一周期部分的离线计算取决于并将这些数据保存在特定表中。对于所有周期寿命,由于存在四分之一波和半波可靠性的情况,因此残余脉冲是基于初始四分之一周期的值创建的。模拟设计的结果显示微控制器时间和内存增加显著节省,这将支持所有转换器任务。