摘要 — 通过表面肌电 (sEMG) 信号对手部运动进行分类是一种成熟的高级人机交互方法。然而,sEMG 运动识别必须处理基于 sEMG 控制的长期可靠性,这受到影响 sEMG 信号的可变性的限制。嵌入式解决方案会受到识别准确度随时间下降的影响,这使得它们不适合可靠的手势控制器设计。在本文中,我们提出了一种基于时间卷积网络 (TCN) 的完整的可穿戴级嵌入式系统,用于基于 sEMG 的稳健手势识别。首先,我们开发了一种新颖的 TCN 拓扑 (TEMPONet),并在基准数据集 (Ninapro) 上测试了我们的解决方案,实现了 49.6% 的平均准确率,比目前最先进的 (SoA) 好 7.8%。此外,我们设计了一个基于 GAP8(一种新型 8 核物联网处理器)的节能嵌入式平台。使用我们的嵌入式平台,我们收集了第二个 20 个会话数据集,以在代表最终部署的设置上验证系统。我们使用 TCN 获得了 93.7% 的平均准确率,与 SoA SVM 方法(91.1%)相当。最后,我们使用 8 位量化策略来适应处理器的内存限制,对在 GAP8 上实现的网络的性能进行了分析。我们达到了 4 倍更低的内存占用(460 kB),性能下降仅为 3% 的准确率。我们详细介绍了在 GAP8 平台上的执行情况,结果显示量化网络在 12.84 毫秒内执行单个分类,功率包络为 0.9 mJ,使其适合长寿命可穿戴设备部署。
10。工商管理学士业务分析2101903003 2100100759 Arifa Rizwan 9.4
摘要背景:人们尚未找到最佳方法来自动捕获、分析、组织和合并结构和功能性脑磁共振成像(MRI)数据,以最终提取相关信号,协助缺氧昏迷患者床边的医疗决策过程。我们的目标是开发和验证一种深度学习模型,以利用多模态3D MRI全脑时间序列对缺氧缺血性昏迷相关的脑损伤进行早期评估。方法:这项概念验证、前瞻性、队列研究于 2018 年 3 月至 2020 年 5 月期间在大学医院(法国图卢兹)附属的重症监护室进行。所有患者在心脏骤停后至少 2 天(4±2 天)处于昏迷状态时接受扫描。在同一时期,我们招募并纳入年龄匹配的健康志愿者。脑 MRI 量化包括来自感兴趣区域(楔前神经和后扣带皮层)的“功能数据”和全脑功能连接分析以及“结构数据”(灰质体积、T1 加权、各向异性分数和平均扩散率)。专门设计的 3D 卷积神经元网络 (CNN) 通过使用原始 MRI 指标作为输入来区分意识状态(昏迷与对照)。基于卷积滤波器研究的体素可视化方法被用于支持 CNN 结果。法国图卢兹大学教学医院伦理委员会 (2018-A31) 批准了这项研究,并获得了所有参与者的知情同意。结果:最终队列包括 29 名缺氧后昏迷患者和 34 名健康志愿者。通过结合不同的 MR 指标使用 3D CNN 成功将昏迷患者与对照区分开来。功能性 MRI 数据(尤其是后扣带皮层的静息态功能性 MRI)的准确率最高,经过 10 次重复的十倍交叉验证,测试集的准确率为 0.96(范围为 0.94-0.98)。通过多数投票策略,可以实现更令人满意的表现,这可以弥补
摘要 - 在本文中,我们为在协作环境中为智能负载平衡和排队代理提供了图形卷积深的加固学习框架。我们旨在平衡不同路径上的流量负载,然后控制网络节点上属于不同流量类别的数据包。我们的目标是双重的:首先是在吞吐量和端到端延迟方面提高一般网络性能,其次,以确保满足一组分类网络流的严格服务水平协议。我们的建议使用注意机制从当地观察和邻里政策中提取相关特征,以限制机构间通信的开销。我们在台球测试台中评估了我们的算法,并表明它们在吞吐量和端到端延迟方面都优于加载平衡和智能排队的经典方法。索引术语 - 智能排队,负载平衡,深入执行学习,多代理系统。
人工智能(AI)今天占据了中心排名,尤其是在技术进步无处不在的情况下。在最有影响力的工具中,深度学习已经在专业和学术领域中建立了自己。本文着重于卷积神经网络在检测与大米竞争的杂草方面的有效性。为了实现这一目标,将预训练的Inception_V3模型的扩展用于图像分类,而Mobilenet则用于图像处理。这种创新的方法在大米和杂草之间有挑战性的稻田上进行了测试,这是AI领域的重大进步。然而,两种模型的训练都揭示了局限性:Inception_V3在第10次迭代后表现出过度拟合,而Mobilenet在第一次迭代中表现出较高的波动性和过度拟合。尽管面临这些挑战,但Inception_V3还是以其出色的准确性而脱颖而出。
摘要:本研究研究了描绘变速箱,森林,农田和山脉的航空图像的分类。要完成分类工作,使用卷积神经网络(CNN)体系结构从输入照片中提取功能。然后,使用SoftMax对图像进行分类。要测试模型,我们使用90批量的ADAM优化器和0.001的学习率将其运行了十个时期。培训和评估都是使用数据集进行的,该数据集将Google卫星图像与MLRNET数据集融合在一起的图片。综合数据集包含10,400张图像。我们的研究表明,转移学习模型和MobilenetV2,对于景观分类非常有效。这些模型是实际使用的好选择,因为它们在精度和效率之间很好地结合在一起。我们的方法在内置的CNN模型上以87%的总体准确度获得了结果。此外,我们通过利用验证的VGG16和MobilenEtV2模型作为传输学习的起点,达到更高的精度。具体来说,VGG16的精度为90%,测试损失为0.298,而MobileNetV2的精度优于两个模型,其精度为96%,测试损失为0.119;结果表明,使用Mobilenetv2进行转移学习的有效性来对传输塔,森林,农田和山脉进行分类。关键字:航空图像,图像分类,卷积神经网络(CNN),转移学习
摘要 - 一名昏昏欲睡的驾驶员在路上比那个超速驾驶的驾驶员要危险得多,因为他是微骨的受害者。汽车研究人员和制造商试图通过几种避免这种危机的技术解决方案来解决这个问题。本文侧重于使用基于神经网络的方法来检测这种微睡眠和嗜睡。我们以前在此领域的工作涉及使用机器学习与多层感知器来检测相同的工作。在本文中,通过利用摄像机检测到的面部标志来提高准确性,并传递给卷积神经网络(CNN)以对嗜睡进行分类。这项工作的成就是为无眼镜的类别提供了重量超过88%的重量分类模型的轻量级替代品,对于没有眼镜的类别之夜的85%以上。平均在所有类别中都达到了超过83%的准确性。此外,对于模型大小,复杂性和存储,与最大大小为75 kb的基准模型相比,新提出的模型有明显减少。拟议的基于CNN的模型可用于构建嵌入式系统和Android设备的实时驱动器嗜睡检测系统,具有高度准确性和易用性。索引术语 - 驾驶员行为监控系统,淹没检测,实时深度学习,卷积神经网络,面部地标,Android。
隐藏在简单之后的是一个事实,即计算卷积要求对输入边界的工作做出假设。虽然这些假设的后果可以在计算机视觉和图像处理中忽略,但在DL中并不容易完成分辨率层次结构的深度,并且在分辨率金字塔的顶部,每个像素可能代表底部的图像的重要片段。
2,3,4 MCA,SCAT,Galgotias University,Uttar Pradesh摘要:为了识别深层假货和其他形式的更改的面部信息,此工作详细介绍了面部伪造探测系统的开发和实施。我们提出了一个系统,该系统使用最新的机器学习技术识别面部图像和视频的细微变化。接受公开可用数据集的培训后,使用关键性能指标(例如精度,精度和召回)评估系统。用于构建系统,使用卷积神经网络或CNN。测试是使用公开可用数据集进行的。为了使其成为强大的模型,还可以构建自定义数据集。我们还研究了如何使用该技术来确保数字身份并打击错误信息,为将来与全球网络安全和数字安全计划的合作打开了大门。关键字:图像处理,生物识别技术,安全性,面部伪造和深层假货。在诸如体育场,火车站和机场码头等地方的公共安全领域以及公司和组织安全的地方,面部识别是身份识别最著名的生物识别方法之一[2,3]。在转向深度学习技术之前,该领域的研究始于1990年代的传统机器学习方法(公制模型,贝叶斯分类和主要成分分析),识别本地特征(LBP,Gabor过滤器)的方法以及识别通用特征的方法。本文提出了一种新颖的面部伪造技术来克服这些挑战。高级技术来操纵媒体(例如Deepfakes)的出现引起了许多关于数字内容真实性的询问。由人工智能创建的深击可以创建真实的图像,从而使区分实际和假信息的挑战。尽管最初是出于艺术和娱乐目的开发了这项技术,但它越来越多地用于恶意将诸如盗用,诽谤和误导信息的传播之类的事物[5]。鉴于社会造成的潜在危险,迫切需要值得信赖和有效的检测方法。由于当前技术有时无法跟上新的锻造方法的复杂性,因此实时检测功能存在差距。尽管在该领域进行了广泛的研究,但开发了可以处理大量数据,使用不同伪造策略并在低计算成本下产生准确结果的系统仍然具有挑战性。
