引用:Annant Maheshwari。等。“使用增强和卷积神经网络检测图像操纵检测”。Medicon工程主题8.2(2025):49-56。
摘要 — 卷积神经网络 (CNN) 是最重要的深度神经网络 (DNN) 类别之一,有助于解决许多与图像识别和计算机视觉相关的任务。它们使用传统 CMOS 技术和数字设计技术的传统实现仍然被认为非常耗能。浮点 CNN 主要依赖于 MAC(乘法和累加)运算。最近,基于 XNOR 和位计数运算的经济高效的 Bite-wise CNN 已被视为可能的硬件实现候选。然而,由于内存和计算核心之间密集的数据提取导致的冯诺依曼瓶颈限制了它们在硬件上的可扩展性。XNOR-BITCOUNT 操作可以通过在忆阻交叉开关阵列上执行的内存计算 (IMC) 范例轻松实现。在新兴的忆阻设备中,自旋轨道扭矩磁随机存取存储器 (SOT-MRAM) 提供了具有更高导通电阻的可能性,从而可以降低读取电流,因为所有交叉开关阵列都是并行读取的。这有助于进一步降低能耗,为更大的交叉开关设计铺平道路。本研究提出了一种基于 SOT-MRAM 的交叉开关架构,能耗极低;我们研究了工艺变异性对突触权重的影响,并对整个交叉开关阵列进行了蒙特卡罗模拟,以评估错误率。模拟结果表明,与其他忆阻解决方案相比,此实现的能耗较低,每次读取操作的能耗为 65.89 fJ。该设计对工艺变化也具有很强的鲁棒性,读取误差极低,最高可达 10%。
摘要 — 深度学习在计算机视觉领域的成功启发了科学界探索新的分析方法。在神经科学领域,特别是在电生理神经成像领域,研究人员开始探索利用深度学习来预测他们的数据,而无需进行广泛的特征工程。本文使用两种不同的深度卷积神经架构比较了使用经过最低限度处理的 EEG 原始数据的深度学习与使用 EEG 光谱特征的深度学习。其中一个来自 Putten 等人 (2018),专门用于处理原始数据;另一个来自 VGG16 视觉网络 (Simonyan and Zisserman, 2015),旨在处理 EEG 光谱特征。我们应用它们对来自 1,574 名参与者的大型语料库的 24 通道 EEG 进行性别分类。我们不仅改进了此类分类问题的最新分类性能,而且还表明在所有情况下,与光谱 EEG 特征相比,原始数据分类可带来更出色的性能。有趣的是,我们表明,专门用于处理 EEG 频谱特征的神经网络在应用于原始数据分类时性能有所提高。我们的方法表明,用于处理 EEG 频谱特征的相同卷积网络在应用于 EEG 原始数据时可产生优异的性能。
摘要 - 基于卷积神经网络(CNN)的深度学习方法显示,基于成像数据,基于成像数据的痴呆症的早期和准确诊断的早期和准确诊断都很大。但是,这些方法尚未在临床实践中被广泛采用,这可能是由于深度学习模型的解释性有限。可解释的提升机(EBM)是玻璃框模型,但无法直接从输入成像数据中学习功能。在这项研究中,我们提出了一个可解释的新型模型,该模型结合了CNN和EBM,以诊断和预测AD。我们制定了一种创新的培训策略,该策略将CNN组件作为功能提取器和EBM组件作为输出块而交替训练CNN组件,以形成端到端模型。该模型将成像数据作为输入,并提供预测和可解释的特征重要性度量。我们验证了有关阿尔茨海默氏病神经影像学计划(ADNI)数据集的拟议模型,以及Health-Ri Parelsnoer神经疾病生成疾病生物库(PND)作为外部测试集。所提出的模型以AD和对照分类为0.956的面积为0.956,预测轻度认知障碍(MCI)在ADNI队列上进行AD的预测为0.694。所提出的模型是与其他最先进的黑盒模型相当的玻璃盒模型。我们的代码可在以下网址提供:https://anonymon.4open.science/r/gl-icnn。索引术语 - Alzheimer氏病,MRI,深度学习,转换神经网络,可解释的提升机器,明显的人工智能
在人工智能中的图像处理和技术方面的进步使计算机可以看到和学习。本文介绍了一项技术,该技术已利用Mobilenetv2深卷积神经网络体系结构来自动识别和诊断图像中的植物疾病。植物疾病的识别和分类现在仅由人类专家 - 杂种延伸代理人和农民,昂贵的劳动力,容易犯错。这项研究依靠数据集收集作为分类和识别植物疾病的技术。这是一个多步骤过程,涉及有关原始集合的预处理数据,叶片的面罩绿色区域,删除绿色部分,转换为灰度,然后获得一些特征,选择并在疾病管理方面进行分类。考虑了两种不同类型的植物,即玉米和马铃薯,以显示拟议模型结果的有效性。混淆矩阵和分类性能报告用于评估系统。土豆和玉米的数据集分别包括6228和6878张叶子的图像。精确,召回和F1得分分别记录为95.15%,94.76%和94.93%,分别记录为马铃薯和玉米数据集的累积性能。这转化为在为这些农作物挑选大多数疾病的抵抗力,使其成为可以在农业疾病检测中信心使用的资源。Mobilenetv2模型在两种农作物中都表现良好,尤其是对于马铃薯早期的疫病和玉米共同生锈。在识别健康的马铃薯叶子方面的性能较低表明,健康和患病的叶子的特征空间可能会重叠。Mobilenetv2模型通常在检测大多数影响马铃薯叶和玉米叶子的疾病时具有强大的能力,但是需要将某些特定区域作为目标以进一步增强。
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。
,我们专注于冰片遥感中心收集的雪雷达[1]数据集,作为NASA操作Icebridge的一部分。雪雷达从2-8 GHz运行,并且能够在冰盖较大区域的较高区域的冰层中跟踪冰层。传感器连续几年产生历史降雪堆积的二维灰度,其中水平轴代表沿轨道方向,而垂直轴代表层层深度。像素亮度与返回信号的强度成正比。代表表面层的像素通常由于较高的反射和降雪密度变化而更明亮且更明确,而代表更深层的像素通常由于密度和较低的回流 - 信号强度而较深,更嘈杂。在我们的实验中,我们在2012年使用了从格陵兰岛选定的雪雷达弹射线的雷达数据。在许多区域,每个冰层代表一年一度的等铁[2]。因此,我们可以在相应的一年之前指定的冰层。
EMBA所有专业MBA所有专业MSC经济学MSC CNC MSC CSC MSC MSC MSC EEE MSC软件Engg。MSC Telecomm。Engg。 MSC生物多样性MGT。 MSC生物技术。 和生物信息学MSC CCD MSC Env。 管理MA英语文学MSS Dev。 研究MSS Media&Comm。 mph全部Engg。MSC生物多样性MGT。MSC生物技术。和生物信息学MSC CCD MSC Env。管理MA英语文学MSS Dev。研究MSS Media&Comm。mph全部
完全同构加密(FHE)是一种有前途的加密原始原始性,用于实现私人神经网络推理(PI)服务,通过允许客户端将推理任务完全卸载到云服务器,同时使客户端数据不符合服务器。这项工作提出了Neujeans,这是一种基于深层卷积神经网络(CNN)PI的解决方案。neujeans解决了CNN评估的巨大计算成本的关键问题。我们介绍了一种称为系数中插槽(CINS)编码的新型编码方法,该方法可以在一个HE乘法中进行多次插入而无需昂贵的插槽排列。我们进一步观察到编码是通过在常规插槽编码中的密文上进行离散傅立叶变换(DFT)的前几个步骤来获得的。此属性使我们能够保存CINS和插槽编码之间的转换,因为启动绑带密文始于DFT。利用这一点,我们为各种二维卷积(Conv2D)操作设计了优化的执行流,并将其应用于端到端CNN启动。neujeans与基于最新的FHE PI工作相比,高达5.68倍的Conv2D激活序列的性能加速了,并在仅几秒钟内就可以在Imagenet的规模上执行CNN的PI。
。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是由此预印本的版权持有者于 2025 年 1 月 2 日发布的。 ;https://doi.org/10.1101/2025.01.02.631092 doi:bioRxiv 预印本
