人工智能(AI)今天占据了中心排名,尤其是在技术进步无处不在的情况下。在最有影响力的工具中,深度学习已经在专业和学术领域中建立了自己。本文着重于卷积神经网络在检测与大米竞争的杂草方面的有效性。为了实现这一目标,将预训练的Inception_V3模型的扩展用于图像分类,而Mobilenet则用于图像处理。这种创新的方法在大米和杂草之间有挑战性的稻田上进行了测试,这是AI领域的重大进步。然而,两种模型的训练都揭示了局限性:Inception_V3在第10次迭代后表现出过度拟合,而Mobilenet在第一次迭代中表现出较高的波动性和过度拟合。尽管面临这些挑战,但Inception_V3还是以其出色的准确性而脱颖而出。
摘要:本研究研究了描绘变速箱,森林,农田和山脉的航空图像的分类。要完成分类工作,使用卷积神经网络(CNN)体系结构从输入照片中提取功能。然后,使用SoftMax对图像进行分类。要测试模型,我们使用90批量的ADAM优化器和0.001的学习率将其运行了十个时期。培训和评估都是使用数据集进行的,该数据集将Google卫星图像与MLRNET数据集融合在一起的图片。综合数据集包含10,400张图像。我们的研究表明,转移学习模型和MobilenetV2,对于景观分类非常有效。这些模型是实际使用的好选择,因为它们在精度和效率之间很好地结合在一起。我们的方法在内置的CNN模型上以87%的总体准确度获得了结果。此外,我们通过利用验证的VGG16和MobilenEtV2模型作为传输学习的起点,达到更高的精度。具体来说,VGG16的精度为90%,测试损失为0.298,而MobileNetV2的精度优于两个模型,其精度为96%,测试损失为0.119;结果表明,使用Mobilenetv2进行转移学习的有效性来对传输塔,森林,农田和山脉进行分类。关键字:航空图像,图像分类,卷积神经网络(CNN),转移学习
摘要 - 一名昏昏欲睡的驾驶员在路上比那个超速驾驶的驾驶员要危险得多,因为他是微骨的受害者。汽车研究人员和制造商试图通过几种避免这种危机的技术解决方案来解决这个问题。本文侧重于使用基于神经网络的方法来检测这种微睡眠和嗜睡。我们以前在此领域的工作涉及使用机器学习与多层感知器来检测相同的工作。在本文中,通过利用摄像机检测到的面部标志来提高准确性,并传递给卷积神经网络(CNN)以对嗜睡进行分类。这项工作的成就是为无眼镜的类别提供了重量超过88%的重量分类模型的轻量级替代品,对于没有眼镜的类别之夜的85%以上。平均在所有类别中都达到了超过83%的准确性。此外,对于模型大小,复杂性和存储,与最大大小为75 kb的基准模型相比,新提出的模型有明显减少。拟议的基于CNN的模型可用于构建嵌入式系统和Android设备的实时驱动器嗜睡检测系统,具有高度准确性和易用性。索引术语 - 驾驶员行为监控系统,淹没检测,实时深度学习,卷积神经网络,面部地标,Android。
2,3,4 MCA,SCAT,Galgotias University,Uttar Pradesh摘要:为了识别深层假货和其他形式的更改的面部信息,此工作详细介绍了面部伪造探测系统的开发和实施。我们提出了一个系统,该系统使用最新的机器学习技术识别面部图像和视频的细微变化。接受公开可用数据集的培训后,使用关键性能指标(例如精度,精度和召回)评估系统。用于构建系统,使用卷积神经网络或CNN。测试是使用公开可用数据集进行的。为了使其成为强大的模型,还可以构建自定义数据集。我们还研究了如何使用该技术来确保数字身份并打击错误信息,为将来与全球网络安全和数字安全计划的合作打开了大门。关键字:图像处理,生物识别技术,安全性,面部伪造和深层假货。在诸如体育场,火车站和机场码头等地方的公共安全领域以及公司和组织安全的地方,面部识别是身份识别最著名的生物识别方法之一[2,3]。在转向深度学习技术之前,该领域的研究始于1990年代的传统机器学习方法(公制模型,贝叶斯分类和主要成分分析),识别本地特征(LBP,Gabor过滤器)的方法以及识别通用特征的方法。本文提出了一种新颖的面部伪造技术来克服这些挑战。高级技术来操纵媒体(例如Deepfakes)的出现引起了许多关于数字内容真实性的询问。由人工智能创建的深击可以创建真实的图像,从而使区分实际和假信息的挑战。尽管最初是出于艺术和娱乐目的开发了这项技术,但它越来越多地用于恶意将诸如盗用,诽谤和误导信息的传播之类的事物[5]。鉴于社会造成的潜在危险,迫切需要值得信赖和有效的检测方法。由于当前技术有时无法跟上新的锻造方法的复杂性,因此实时检测功能存在差距。尽管在该领域进行了广泛的研究,但开发了可以处理大量数据,使用不同伪造策略并在低计算成本下产生准确结果的系统仍然具有挑战性。
引用:Annant Maheshwari。等。“使用增强和卷积神经网络检测图像操纵检测”。Medicon工程主题8.2(2025):49-56。
摘要 — 卷积神经网络 (CNN) 是最重要的深度神经网络 (DNN) 类别之一,有助于解决许多与图像识别和计算机视觉相关的任务。它们使用传统 CMOS 技术和数字设计技术的传统实现仍然被认为非常耗能。浮点 CNN 主要依赖于 MAC(乘法和累加)运算。最近,基于 XNOR 和位计数运算的经济高效的 Bite-wise CNN 已被视为可能的硬件实现候选。然而,由于内存和计算核心之间密集的数据提取导致的冯诺依曼瓶颈限制了它们在硬件上的可扩展性。XNOR-BITCOUNT 操作可以通过在忆阻交叉开关阵列上执行的内存计算 (IMC) 范例轻松实现。在新兴的忆阻设备中,自旋轨道扭矩磁随机存取存储器 (SOT-MRAM) 提供了具有更高导通电阻的可能性,从而可以降低读取电流,因为所有交叉开关阵列都是并行读取的。这有助于进一步降低能耗,为更大的交叉开关设计铺平道路。本研究提出了一种基于 SOT-MRAM 的交叉开关架构,能耗极低;我们研究了工艺变异性对突触权重的影响,并对整个交叉开关阵列进行了蒙特卡罗模拟,以评估错误率。模拟结果表明,与其他忆阻解决方案相比,此实现的能耗较低,每次读取操作的能耗为 65.89 fJ。该设计对工艺变化也具有很强的鲁棒性,读取误差极低,最高可达 10%。
摘要 — 深度学习在计算机视觉领域的成功启发了科学界探索新的分析方法。在神经科学领域,特别是在电生理神经成像领域,研究人员开始探索利用深度学习来预测他们的数据,而无需进行广泛的特征工程。本文使用两种不同的深度卷积神经架构比较了使用经过最低限度处理的 EEG 原始数据的深度学习与使用 EEG 光谱特征的深度学习。其中一个来自 Putten 等人 (2018),专门用于处理原始数据;另一个来自 VGG16 视觉网络 (Simonyan and Zisserman, 2015),旨在处理 EEG 光谱特征。我们应用它们对来自 1,574 名参与者的大型语料库的 24 通道 EEG 进行性别分类。我们不仅改进了此类分类问题的最新分类性能,而且还表明在所有情况下,与光谱 EEG 特征相比,原始数据分类可带来更出色的性能。有趣的是,我们表明,专门用于处理 EEG 频谱特征的神经网络在应用于原始数据分类时性能有所提高。我们的方法表明,用于处理 EEG 频谱特征的相同卷积网络在应用于 EEG 原始数据时可产生优异的性能。
摘要 - 基于卷积神经网络(CNN)的深度学习方法显示,基于成像数据,基于成像数据的痴呆症的早期和准确诊断的早期和准确诊断都很大。但是,这些方法尚未在临床实践中被广泛采用,这可能是由于深度学习模型的解释性有限。可解释的提升机(EBM)是玻璃框模型,但无法直接从输入成像数据中学习功能。在这项研究中,我们提出了一个可解释的新型模型,该模型结合了CNN和EBM,以诊断和预测AD。我们制定了一种创新的培训策略,该策略将CNN组件作为功能提取器和EBM组件作为输出块而交替训练CNN组件,以形成端到端模型。该模型将成像数据作为输入,并提供预测和可解释的特征重要性度量。我们验证了有关阿尔茨海默氏病神经影像学计划(ADNI)数据集的拟议模型,以及Health-Ri Parelsnoer神经疾病生成疾病生物库(PND)作为外部测试集。所提出的模型以AD和对照分类为0.956的面积为0.956,预测轻度认知障碍(MCI)在ADNI队列上进行AD的预测为0.694。所提出的模型是与其他最先进的黑盒模型相当的玻璃盒模型。我们的代码可在以下网址提供:https://anonymon.4open.science/r/gl-icnn。索引术语 - Alzheimer氏病,MRI,深度学习,转换神经网络,可解释的提升机器,明显的人工智能
在人工智能中的图像处理和技术方面的进步使计算机可以看到和学习。本文介绍了一项技术,该技术已利用Mobilenetv2深卷积神经网络体系结构来自动识别和诊断图像中的植物疾病。植物疾病的识别和分类现在仅由人类专家 - 杂种延伸代理人和农民,昂贵的劳动力,容易犯错。这项研究依靠数据集收集作为分类和识别植物疾病的技术。这是一个多步骤过程,涉及有关原始集合的预处理数据,叶片的面罩绿色区域,删除绿色部分,转换为灰度,然后获得一些特征,选择并在疾病管理方面进行分类。考虑了两种不同类型的植物,即玉米和马铃薯,以显示拟议模型结果的有效性。混淆矩阵和分类性能报告用于评估系统。土豆和玉米的数据集分别包括6228和6878张叶子的图像。精确,召回和F1得分分别记录为95.15%,94.76%和94.93%,分别记录为马铃薯和玉米数据集的累积性能。这转化为在为这些农作物挑选大多数疾病的抵抗力,使其成为可以在农业疾病检测中信心使用的资源。Mobilenetv2模型在两种农作物中都表现良好,尤其是对于马铃薯早期的疫病和玉米共同生锈。在识别健康的马铃薯叶子方面的性能较低表明,健康和患病的叶子的特征空间可能会重叠。Mobilenetv2模型通常在检测大多数影响马铃薯叶和玉米叶子的疾病时具有强大的能力,但是需要将某些特定区域作为目标以进一步增强。
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。