交通事故仍然是一个紧迫的公共安全问题,由于驾驶员缺乏对道路标志的关注而导致的大量事件。自动化的道路标志识别已成为增强驾驶援助系统的有前途的技术。本研究探讨了卷积神经网络(CNN)在自动识别路标中的应用。cnns作为深度学习算法,具有处理和对视觉数据进行分类的能力,非常适合基于图像的任务,例如路标识别。该研究的重点是用于培训CNN的数据收集过程,并结合了各种路标图像数据集,以提高各种情况下的识别精度。作为用户界面开发了一个移动应用程序,并在应用程序上显示了系统的输出。结果表明,该系统能够实时识别标志,并具有10米距离的符号识别的平均准确性:i)白天= 89.8%,ii)夜间= 75.6%和III)雨季条件= 76.4%。总而言之,在本研究中所证明的那样,自动道路标志识别中CNN的整合是通过在实时场景中解决驾驶员对道路标志的关注来提高驾驶安全性的有前途的途径。
摘要:深层卷积神经网络,尤其是具有较大内核的大型模型(3 3或更多),已经在单像超分辨率(SISR)任务中取得了重大进展。但是,此类模型的大量计算足迹阻止了它们在实时,资源约束的环境中的影响。相反,1 1卷积具有实质性的计算效率,但在汇总局部空间表示方面挣扎,这是SISR模型的重要能力。响应这种二分法,我们建议统一3 3和1 1个内核的优点,并利用其轻巧的SISR任务的巨大潜力。具体,我们提出了一个简单而有效的1 1 1卷积网络,称为基于Shift-Conv的网络(SCNET)。通过合并无参数的空间移动操作,完全1 1卷积网络配备了强大的表示能力和令人印象深刻的计算效率。广泛的实验表明,尽管SCNET完全1 1 1卷积结构,但始终匹配甚至超过了采用常规卷积的现有轻质SR模型的性能。可以在https://github.com/aitical/scnet上找到代码和验证的模型。
摘要 — 有效学习脑电图 (EEG) 信号中的时间动态具有挑战性,但对于使用脑机接口 (BCI) 解码大脑活动至关重要。尽管 Transformers 因其长期顺序学习能力在 BCI 领域广受欢迎,但大多数将 Transformers 与卷积神经网络 (CNN) 相结合的方法都无法捕捉 EEG 信号从粗到细的时间动态。为了克服这一限制,我们引入了 EEG-Deformer,它将两个主要的新组件合并到 CNN-Transformer 中:(1) 分层粗到细 Transformer (HCT) 块,将细粒度时间学习 (FTL) 分支集成到 Transformers 中,有效辨别从粗到细的时间模式;(2) 密集信息净化 (DIP) 模块,利用多级、净化的时间信息来提高解码准确性。对三项代表性认知任务(认知注意力、驾驶疲劳和心理负荷检测)进行的全面实验一致证实了我们提出的 EEG-Deformer 的通用性,表明它的表现优于或与现有的最先进方法相当。可视化结果表明,EEG-Deformer 从神经生理学上有意义的大脑区域学习相应的认知任务。源代码可在 https://github.com/yi-ding-cs/EEG-Deformer 找到。
摘要 — 缺乏足够的训练样本和嘈杂的高维特征是基于脑电图 (EEG) 的脑机接口 (BCI) 的运动想象 (MI) 解码算法面临的主要挑战。为了应对这些挑战,受 MI 的神经生理特征的启发,本文提出了一种用于 MI 分类的新型滤波器组卷积网络 (FBCNet)。FBCNet 采用多视图数据表示,然后进行空间滤波以提取光谱空间判别特征。这种多阶段方法即使在训练数据有限的情况下也能有效地训练网络。更重要的是,在 FBCNet 中,我们提出了一种新的方差层,可以有效地聚合 EEG 时域信息。通过这种设计,我们在四个 MI 数据集上将 FBCNet 与最先进的 (SOTA) BCI 算法进行了比较:BCI 竞赛 IV 数据集 2a (BCIC-IV-2a)、OpenBMI 数据集和两个来自慢性中风患者的大型数据集。结果表明,通过实现 76.20% 的 4 类分类准确率,FBCNet 为 BCIC-IV-2a 数据集设定了新的 SOTA。在其他三个数据集上,FBCNet 的二分类准确率提高了 8%。此外,我们使用可解释的 AI 技术提供了第一份关于健康受试者和中风患者之间判别性 EEG 特征差异的报告。此外,FBCNet 源代码可在 https://github.com/ravikiran-mane/FBCNet 上找到。
大量研究强调了人工智能 (AI) 在乳腺癌诊断中的重要性。然而,对该领域 AI 应用的系统评价往往缺乏凝聚力,每项研究都采用独特的方法。本研究旨在通过引文分析详细研究 AI 在乳腺癌诊断中的作用,帮助对吸引学术关注的关键领域进行分类。它还包括主题分析,以确定每个类别中的具体研究主题。2015 年至 2024 年期间发表的与乳腺癌和 AI 相关的研究共计 30,200 项,来源于 IEEE、Scopus、PubMed、Springer 和 Google Scholar 等数据库。在应用纳入和排除标准后,确定了 32 项相关研究。这些研究中的大多数都使用分类模型进行乳腺癌预测,其中高准确度是最常见的报告性能指标。卷积神经网络 (CNN) 成为许多研究中的首选模型。研究结果表明,乳腺癌诊断中基于 AI 的算法的数量和质量在给定年份都在增加。人工智能越来越多地被视为医疗保健行业和临床专业知识的补充,其目标是提高全球优质医疗的可及性和可负担性。
摘要 - 鸟眼视图中的3D对象检测(BEV)空间最近已成为自主驾驶领域的一种普遍方法。与透视图方法相比,尽管准确性和速度估计的改善有所提高,但现实世界自动驾驶汽车中基于BEV的技术的部署仍然具有挑战性。这主要是由于它们依赖基于视觉转化器(VIT)的架构,该体系结构引入了相对于输入分辨率的二次复杂性。为了解决这个问题,我们提出了一个有效的基于BEV的3D检测框架,称为Bevenet,该框架利用了仅卷积的架构建筑设计来规避VIT模型的局限性,同时保持基于BEV的方法的有效性。我们的例子表明,在Nuscenes挑战中,Bevenet比现代的最新方法(SOTA)快速(SOTA)方法,达到0.456的平均平均精度(MAP)为0.456,NUSCENES检测分数(NDS)的平均精度(MAP)为0.555在Nuscenes验证验证数据上,均为0.555,并使用persenter firames perference Speets perspersy Specters perspersy perspersy perspersy prement perspersy prement per per per 47。据我们所知,这项研究是第一个实现基于BEV的方法的重大效率提高的研究,强调了它们对现实世界自动驾驶应用程序的可行性的增强。
摘要 静息态 fMRI 已广泛应用于研究晚年抑郁症 (LLD) 的病理生理。与传统的线性方法不同,跨样本熵 (CSE) 分析显示了大脑区域之间 fMRI 信号的非线性特性。此外,深度学习的最新进展,例如卷积神经网络 (CNN),为理解 LLD 提供了及时的应用。准确和及时的诊断对于 LLD 至关重要;因此,本研究旨在结合 CNN 和 CSE 分析,根据大脑静息态 fMRI 信号区分 LLD 患者和非抑郁症对照老年人。77 名老年人(包括 49 名患者和 28 名对照老年人)接受了 fMRI 扫描。开发了体积对应于每个参与者的 90 个种子感兴趣区域的三维 CSE,并将其输入到疾病分类和抑郁严重程度预测模型中。我们在额上回(左背外侧和右眶部)、左岛叶和右枕中回的诊断准确率 > 85%。平均均方根误差 (RMSE) 为 2.41,需要三个独立模型来预测重度、中度和轻度抑郁组的抑郁症状。左顶下小叶、左海马旁回和左中央后回的 CSE 体积在各自的模型中表现最佳。结合复杂性分析和深度学习算法可以将 LLD 患者与对照老年人进行分类,并根据 fMRI 数据预测症状严重程度。此类应用可用于精准医疗,用于 LLD 的疾病检测和症状监测。
神经网络的设计受人脑的工作机制的启发,此后在各个领域取得了巨大的成功。心理学仍然旨在更好地了解人脑,但计算机科学努力增强对神经网络的理解。神经网络研究的主要目标是开发能够执行与人脑相似的任务,而不是重新创建它的模型。有趣的是,尽管没有明确设计为此目的,但神经网络倾向于表现出比预期的更像人类的行为。特别是,最近的发现表明,CNN可能表现出感知组织的格式塔定律的某些方面[1],这些方面解释了人脑如何解释复杂的视觉刺激,尽管可能会受到某些阈值和局限性的影响。先前探索的神经网络体系结构的狭窄范围,其数据集有限和实验不足,因此需要进行更详细的研究。我们关注的是闭合原理,该原理指出,当零件被遮挡或碎片时,人的大脑自然填补了将数字视为完整批发的空白。我们提出了一个专门设计的数据集,该数据集旨在检查各种基于心理的透视仪的关闭,并在广泛的CNN中进行实验,以研究其与该原则的一致性。我们的工作提供了有关CNN有关关闭的全面分析,确定了限制和阈值,这些限制和阈值定义了其在逐渐操纵的刺激类别上执行闭合时的可用性。
摘要口服鳞状细胞癌(OSCC)提出了重大的健康挑战,早期检测对于有效治疗和提高的存活率至关重要。先前的研究检查了标准照片的使用,例如智能手机中的照片,但它们通常仅依靠图像,忽略了合并多种方式的潜在好处。这项研究通过提出一条包含多种数据源的多模式深度学习管道来解决这一差距,其中包括患者元数据,该数据源模仿了临床医生在早期发现口腔癌中的诊断方法。该研究利用最新的图像编码将口腔病变分类为良性且潜在的恶性类别。提出了六个预训练的深度学习模型(Mobilenetv3-Large,MixNet-S,Resnet-50,Hrnet-W18-C,Densenet-121和Inception_V3)的性能比较。使用MobileNetV3-Large-large-large图像Encoder,提议的管道的性能达到了81%的总体精度,精度为79%,召回79%,F1得分为78%,MATTHEWS相关系数(MCC)为0.57。与仅使用图像数据相比,研究结果突出了整合多种数据模式的功效,以更准确地检测潜在的恶性肿瘤。结果可能为改善临床决策和患者预后铺平道路。
我们考虑具有在空间维度中对称的2D结构特征的卷积神经网络(CNN)。这种网络在为顺序推荐问题以及RNA和蛋白质序列的二级结构推理问题以及二级结构推理时产生了对成对关系的建模。我们开发了一种CNN体系结构,该体系结构生成并保留了网络卷积层中的对称结构。我们提出了卷积内核的参数化,该卷积内核产生了更新规则,以在整个培训过程中保持对称性。我们将此体系结构应用于顺序推荐问题,RNA二级结构推断问题和蛋白质触点图预测问题,表明使用较少数量的机器参数可产生对称结构化网络的改进结果。