摘要:癫痫是神经系统的常见疾病,及时预测癫痫发作并进行干预治疗,可以大大减少患者的意外伤害,保障患者的生命健康。本文提出了一种神经形态脉冲卷积变换器,即Spiking Conformer,用于从头皮长程脑电图(EEG)记录中检测和预测癫痫发作片段。我们报告了使用波士顿儿童医院-麻省理工学院(CHB-MIT)EEG数据集对Spiking Conformer模型的评估结果。通过利用基于脉冲的加法运算,与非脉冲模型相比,Spiking Conformer显着降低了分类计算成本。此外,我们引入了一个近似脉冲神经元层,在不牺牲准确性的情况下进一步将脉冲触发的神经元更新减少近38%。使用原始 EEG 数据作为输入,提出的 Spiking Conformer 在癫痫发作检测任务中实现了 94.9% 的平均灵敏度和 99.3% 的特异性率,在癫痫发作预测任务中实现了 96.8% 的平均灵敏度和 89.5% 的特异性率,并且与非脉冲等效模型相比,所需的操作减少了 10 倍以上。索引术语 —EEG 数据、癫痫发作检测、癫痫发作预测、脉冲神经网络、Transformer。
摘要 - 在信息和数据是有价值的资产的时代,网络安全已变得至关重要。需要有效的网络入侵检测系统(NID)来保护敏感的数据和信息从网络攻击中。许多研究使用机器学习算法和网络数据集创建了NID,这些数据集无法准确反映实际的网络数据流。增加硬件功能和处理大数据的能力使深度学习成为开发NID的首选方法。这项研究使用两种深度学习算法开发了一个NIDS模型:卷积神经网络(CNN)和双向长期术语记忆(BILSTM)。cnn提取了提出的模型中的空间特征,而Bilstm提取了时间特征。使用两个公开可用的基准数据集CICIDS2017和UNSW-NB15,用于评估模型。所提出的模型在准确性方面超过了先前的方法,在CICIDS2017数据集中,二进制和多类分类的二进制和多类分类达到了99.83%和99.81%。在UNSW-NB15数据集上,该模型分别为二进制和多类分类的精度分别达到94.22%和82.91%。还使用主组件分析(PCA)用于功能工程,以提高模型训练的速度并将现有功能降低到十个维度,而不会显着影响模型的性能。关键字 - 双向长期记忆,卷积神经网络,深度学习,网络入侵检测系统,主成分分析
通讯作者:星期日。导航日常生活成为一项艰巨的任务,挑战与寻找放错位置的个人物品并意识到其环境中的对象以避免碰撞。这需要需要自动解决方案来促进对象识别。虽然传统的方法,例如导犬,白色的甘蔗和盲文提供了有价值的解决方案,但最近的技术解决方案,包括基于智能手机的识别系统和便携式相机,但遇到了诸如与文化特异性,设备特异性和缺乏系统自治有关的限制。这项研究通过引入卷积神经网络(CNN)对象识别系统的限制解决了解决方案,该解决方案旨在集成到一个移动机器人中,该机器人旨在作为视觉障碍者的机器人助手。机器人助手能够在狭窄的环境中四处走动。它将覆盆子PI与一个编程的摄像头结合在一起,以识别三个对象:手机,鼠标和椅子。一个卷积神经网络模型进行了训练以供对象识别,其中30%用于测试。使用Google Colab中的Yolov3模型进行了培训。对识别系统的定性评估的精度为79%,召回96%,机器人助手的精度为80%。它还包括一个图形用户界面,用户可以轻松地控制机器人助手的运动和速度。发达的机器人助手显着增强了自主权和对象识别,有望在视力受损的个体的日常导航中获得可观的好处。
摘要:本文的主要目的是提供有关如何创建卷积神经网络 (CNN) 以从 EEG 信号中提取特征的信息。我们的任务是了解为各种应用场景创建和微调 CNN 的主要方面。我们考虑了 EEG 信号的特征,并探索了各种信号处理和数据准备技术。这些技术包括降噪、滤波、编码、解码和降维等。此外,我们对众所周知的 CNN 架构进行了深入分析,将它们分为四个不同的组:标准实现、循环卷积、解码器架构和组合架构。本文还对这些架构进行了全面评估,涵盖了准确度指标、超参数和附录,其中包含一个表格,概述了用于从 EEG 信号中提取特征的常用 CNN 架构的参数。
摘要。运动图像分类是一项具有挑战性的任务,涉及多种类型的运动,在功能识别和次优检测结果方面遇到困难。这项研究采用了四个验证的模型,即残留网络50(Resnet-50),EfficityNet B7,密集连接的卷积网络121(Densenet-121),您只能查看一次版本8(Yolov8),以解决对100个不同运动图像类别进行分类的问题。数据集包含12200张体育图像,这是这项研究的强大实验基础。通过比较他们的表现,可以发现Resnet-50在训练集中表现出出色的性能,在验证集中的准确度为90.80%,88.75%的精度为88.75%。有效网络B7模型的训练精度为37.45%,推理的精度为62.42%。令人印象深刻的性能可能是由于其在处理特定的运动图像分类任务时的表示功能有限。densenet-121在培训中获得了71.791%的准确性,验证集获得了86.211%。与EfficityNet B7相比,其性能更好,这表明密集的连通性雅更适合提取图像特征。此外,Yolov8n模型在训练集的平均准确度中提供了出色的性能,验证集的平均精度为96.60%。这些结果展示了在运动图像分类和检测中yolov8n的圆润性能。总而言之,这项研究通过比较运动图像分类中不同算法的性能来解决解决复杂图像分类问题的宝贵见解。了解这些各种算法的优势和缺点对于更深入地理解图像分类任务和指导未来的研究努力至关重要。
摘要 — 医学图像分类是医疗保健领域的一个重要关注领域,它涉及准确分类图像中的异常或异常。它需要快速准确的分类以确保对患者进行适当和及时的治疗。本文介绍了一种基于卷积神经网络 (CNN) 的模型,该模型利用 VGG16 架构进行医学图像分类,特别是在脑肿瘤和阿尔茨海默氏症数据集中。VGG16 架构以其提取重要特征的卓越能力而闻名,这对医学图像分类至关重要。为了提高诊断的准确性,进行了详细的实验设置,其中包括精心选择和组织涵盖数据集中不同疾病和异常的医学图像集合。然后调整模型的架构以实现图像分类的最佳性能。结果显示该模型在识别医学图像中的异常方面的效率,尤其是对于脑肿瘤数据集。给出了灵敏度、特异性和 F1 分数评估指标,强调了该模型准确区分各种医学图像疾病的能力。关键词——深度学习、卷积神经网络 (CNN)、VGG-16、医学图像分类。
这项研究强调需要改善诊断方案并提高意识,以有效地管理Covid-19及其并发症,尤其是肺炎,以减轻医疗保健系统负担的负担,这强调了早期识别肺炎的早期识别的重要性重要性,以减轻与造成影响和快速症状的战略方法,以减轻造成影响和快速症状。引入了一种用于检测Covid-19肺炎的新型模型,利用在开源平台上可用的胸部X射线图像和卷积神经网络,并在二进制分类设置中进行了精确的诊断。遵循两个步骤,以提高分类精度并避免过度拟合:(1)在保持分类方案的平衡时放大数据集; (2)结合正则化技术并进行超参数优化。该模型非常适合在本地部署有限的能力,而无需互联网访问。由于网络大小,模型容量大大降低。与文献进行了比较,最终模型的性能更好,并且需要更高的参数,同时达到99.63%的分类准确性,对于二进制案例,模型灵敏度为93.75%。这些模型可以上传到数字平台,以快速诊断并弥补缺乏专业人员和RT-PCR(逆转录聚合酶链反应)。
摘要:疲劳驾驶已成为引发交通事故的主要原因之一,基于脑电信号进行驾驶疲劳检测可以有效评估驾驶员的心理状态,避免交通事故的发生。本文评估了一种提取脑电信号多种特征的特征提取方法,建立了一种时空卷积神经网络(STCNN)用于驾驶员疲劳检测。首先,构建脑电信号的三维特征,包括脑电信号的频域、时域和空间特征;然后,利用STCNN进行疲劳状态分类。STCNN由基于注意力机制的注意时间网络和基于注意力机制的注意卷积神经网络组成。此外,进行了疲劳驾驶实验,采集了14名受试者在清醒和疲劳状态下的脑电信号,最终收集了三种不同驾驶任务负荷下的脑电数据。在此基础上进行了大量实验,并比较了STCNN与六种竞争方法的有效性。结果表明,STCNN的分类准确率为87.55%,可以有效检测驾驶员疲劳状态。
图2。在1980 - 2000年期间通过每日降雨的气候学的输入(左)和目标(右)域的示意图。左图上的黑线显示目标域,而输入域则是整个地图。目标域上:红点是图6和10的三个说明点。从北到南,有巴黎,瑞士阿尔卑斯山和罗马的高点(2247米)。三个蓝色框是第3.2.1节中用于SAL评估的三个区域:北部地区,以比利时,塞文尼斯地区(法国东南)和迪纳尔·阿尔卑斯山(Dinaric Alps)为中心。
摘要:脑磁共振成像 (MRI) 中肿瘤区域的检测和分割在过去二十年中起着重要作用。本文提出了一种用于脑肿瘤检测的高效视觉几何组卷积神经网络架构,该架构由预处理模块、DWT 模块和分类模块以及分割模块组成。基于缩放的数据增强方法用作预处理技术,并使用 DWT 变换分解数据增强的缩放图像。根据这些分解系数构建小波特征图,并使用 EVGG-CNN 架构对其进行分类。该架构将脑图像识别为胶质瘤或健康脑图像。通过将所提出的方法应用于 BRATS 2021 和 Kaggle 数据集中的脑图像,验证了本文所述这些开发方法的有效性。从灵敏度、特异性和准确性方面分析了所提出的 EVGG-CNN 架构的性能。