1 简介 激光诱导击穿光谱 (LIBS) 可确定目标样品中存在的原子元素。使用激光脉冲蒸发目标的小样本(通常小于一微克)以产生电离原子和自由电子的等离子体。当该等离子体冷却并且自由电子与离子重新结合时,会发射出各种谱线。这些线的波长和强度可识别原始目标中的原子元素。此外,还可以推断出目标中存在的这些元素的百分比。通过计算机分析发射的谱线,可以在几分之一秒内完成测量。几乎不需要或不需要样品制备。目标可以是任何吸收所选激光波长的材料:固体、液体或气体。LIBS 被认为源于 Brech 和 Cross 的论文。1 LIBS 发展到目前的状态现在已经有据可查。2 – 4 这种简单、快速且用途广泛的技术广泛应用于实验室和现场测量。后者受到激光和光谱仪技术的进步的推动,这些进步带来了紧凑型便携式 LIBS 系统的出现。5 – 7 LIBS 的应用现在涵盖了物理和生命科学的许多领域,8 – 12 从深海测量 13、14 到火星。15 这项技术的特点是微破坏性(许多应用认为它是非破坏性的),其应用甚至延伸到珍贵艺术品,用于鉴定古代绘画作品和珍宝中的颜料,例如检查古钱币以确定其年代和真实性。16 – 19
1 简介 激光诱导击穿光谱 (LIBS) 可确定目标样品中存在的原子元素。使用激光脉冲蒸发目标的小样本(通常小于一微克),以产生电离原子和自由电子的等离子体。当该等离子体冷却并且自由电子与离子重新结合时,会发射出各种谱线。这些谱线的波长和强度可识别原始目标中的原子元素。此外,还可以推断出目标中存在的这些元素的百分比。通过计算机分析发射的谱线,可以在几分之一秒内完成测量。几乎不需要或根本不需要样品制备。目标可以是任何吸收所选激光波长的材料:固体、液体或气体。LIBS 被认为源于 Brech 和 Cross 的论文。1 LIBS 发展到目前的状态现已得到充分证明。2 – 4 这种简单、快速且多功能的技术广泛应用于实验室和现场现场测量。后者受到激光和光谱仪技术的进步的推动,这些进步带来了紧凑、便携的 LIBS 系统。5 – 7 LIBS 的应用现在涵盖了物理和生命科学的许多领域, 8 – 12 从深海测量 13、14 到火星。15 该技术可归为微破坏性技术(许多应用认为它是非破坏性的),其应用甚至扩展到珍贵艺术品,用于鉴定古代绘画作品和珍宝中的颜料,例如检查古钱币以确定其年代和真实性。16 – 19
1。气候反馈是可以放大或减少初始气候强迫的影响的过程。例如,增加大气绿色房屋气体浓度会导致表面温度较高,从而加速雪和海冰融化,使更多的开放水和地面暴露于太阳辐射。这会导致进一步的变暖,从而导致更多的冰雪融化,依此类推,构成了初始变暖的放大。这被称为正面的“冰 - 阿尔贝托反馈”。负反馈也在地球系统中运行。例如,随着行星响应温室气体的响应,它会辐射更多的长波辐射回到太空(称为“普朗克反馈”)。这使地球冷却,减少了初始变暖。是决定气候敏感性的反馈之和。有关反馈过程的更多信息,请参见Sherwood等。(2020)。2。可以通过多种方式确定地球的气候敏感性。均衡气候敏感性是全球表面温度的增加,如果将二氧化碳的大气浓度相对于工业前时期增加一倍,然后无限期保持恒定。但是,确定气候敏感性需要数千年级的运行模型,这在计算上很昂贵。通常估计是一种更实际的有效气候灵敏度。在此过程中,建模气氛中二氧化碳的浓度突然四倍,并在150年模拟年后记录温度变化。在本科学摘要的其余部分中,我们将通过提及他们使用的度量,有效的气候敏感性来遵循库玛和合着者,只是“气候敏感性”。
简介 检查建筑结构内的潮湿和湿气是一个非常全面的主题。本白皮书重点介绍了对湿气的基本了解、寻找潮湿的一些技术以及如何使用数字湿度计诊断湿度水平。1.什么是潮湿?潮湿是由水进入房产(结构)和房产内积聚的湿气导致冷凝(生活方式)造成的。a.湿气进入房产(结构) 当水渗入建筑物结构时就会发生潮湿。常见原因有: • 雨水从缺少瓷砖或石板的屋顶渗出,从堵塞的排水沟溢出或渗透到窗框周围。• 由于防潮层缺陷或没有防潮层而导致的上升湿气。• 管道漏水、排水或溢流。您经常可以在墙壁和天花板上看到潮湿的“潮汐痕迹”。b. 冷凝(生活方式) 生活方式潮湿问题是由正常的日常活动(洗澡、洗衣服和烘干衣服、做饭和烧水)引起的,所有这些都会产生含有大量水蒸气的暖空气。如果暖空气无法通过打开的窗户或通风口逸出,它会四处移动,直到找到一个冷表面,然后冷却并形成冷凝水。冷凝发生在任何记录低于露点温度(饱和空气释放多余水蒸气的温度)的冷表面上。做饭时可以在浴室的镜子或厨房的窗户上看到这种情况。
ThermAvant International 专门将军事和太空应用传热技术集成到消费产品中。我们推出的第一款主要产品是一款无需用电即可运行的调温旅行杯。它实际上是由火箭科学家设计的。这款旅行杯的首款产品名为 BURNOUT,它确实能将一杯滚烫的咖啡“烧开”。它通过将咖啡从危险的高冲泡温度立即冷却到完美的饮用温度来实现这一点。然后,它全天保持完美的温度范围,而不是冷却得太快。它还能让冷饮全天保持冰冷。BURNOUT 使用一种名为 HeatZorb 的生物基合成蜂蜡,它内置于不锈钢杯壁中,在非常特定的温度下融化。当将热饮倒入 BURNOUT 时,HeatZorb 会在其腔内融化,吸收并储存多余的热量,从而将饮料冷却到合适的温度。一旦达到最佳温度,HeatZorb 就会自动开始将储存的热量释放回饮料中,以保持全天最佳饮用温度。除了热性能外,BURNOUT 还可以用洗碗机清洗,并且由我们位于美国密苏里州的工厂制造。据我们所知,这使我们成为美国唯一一家不锈钢饮具制造商。从猎人到滑雪者,从办公室职员到卡车司机,咖啡和茶是大多数工作成年人的生命线。BURNOUT 的 Drinknow 技术只有一个使命。扑灭火灾。保持温度。
所有 DIGAM 放大器均安装在标准 19 英寸机架中。提供四个前面板安装孔。您的 DIGAM 放大器使用从前到后的强制风冷系统来保持较低且均匀的工作温度。空气由内部风扇吸入,流经前面板上的插槽并穿过组件。DIGAM 系列放大器具有“智能”变速直流风扇,该风扇由散热器温度传感电路控制:只有当任一散热器的温度需要时,风扇速度才会增加,从而将风扇噪音降至最低并有助于减少内部灰尘堆积。在极端热负荷下,风扇将迫使大量空气通过散热器。如果任一散热器过热,其传感电路将降低输出增益。如果放大器过热,另一个传感电路会关闭其电路以切断电源,直到其冷却到安全温度。排气冷却空气被迫通过底盘后部排出,因此请确保放大器侧面有足够的空间让空气逸出。如果是机架安装,请确保排气可以无阻力流动。如果您使用的是背面封闭的机架,则每四个放大器在机架前部必须至少有一个标准机架空间开口。放大器可以直接堆叠在一起(单元之间不需要空间),从机架底部开始。
然后,我们组织了栖息地内部的游览,展示了为宇航员设计的环境。ESH-X可以使宇航员通过提供粉末的食物供应并每天分配2.5升水来饮用,烹饪和淋浴,可以允许宇航员生活在月球上。因此,宇航员可以将湿巾用于个人卫生。栖息地包括化学厕所和配备两张床的睡眠区,这些床具有控制光强度的技术。关闭的单个胶囊提供了隔离并减少机械的潜在噪音,例如空调,使栖息地冷却。每个乘员也有一个专门的空间来存储个人效果。ESH-X还具有允许宇航员在月球上工作的设备。它包含一个科学实验室,宇航员可以在该实验中进行地质样本,研究月球条件下的植物生长,并通过血压监测器等各种医疗器械监测人类健康。它配备了广泛搜索所需的工具和系统,包括相机,电源系统,维修设备和温度控制机制。fur-hoverore,ESH-X使用3D打印机和微波来整合原位资源利用(ISRU)技术,以处理月球材料,这有助于建立自我维持的月球基础。车站还支持艺术,允许宇航员从事保持心理健康的创造性活动。其他高级通信协议确保与地球的持续联系,对于管理外部活动和紧急通信至关重要,并提高了月球任务的安全性和效率。
聚乳酸 (PLA) 是 3D 打印工艺中常用的材料。在材料挤出 (MEX) 技术中,最终的 3D 打印部件具有较低的机械性能。本研究的目的是研究经过退火的 3D 打印 PLA 样品的拉伸强度。考虑的变量是退火温度和退火时间,有三个温度水平:70 ℃ 、90 ℃ 和 110 ℃ ,以及两个退火时间:60 和 90 分钟。冷却速度设定为每小时 10 C,并在炉中冷却 24 小时。结果表明,退火显著影响拉伸强度,与未退火部件相比,退火部件的拉伸强度显著提高。与未经过退火的部件的拉伸强度值相比,退火部件表现出更高的拉伸强度。弹性模量趋于下降,工件尺寸在各个方向上略有收缩。在对患有足下垂的儿童踝足矫形器(AFO)进行退火实验的结果中发现,经过退火处理的踝足矫形器样品在各个方向上均有收缩,变化相对较小。当使用退火工件时,无需补偿工件尺寸。在 110 C 温度下进行 90 分钟的退火时,可获得最高的拉伸强度。与打印样品相比,退火样品的拉伸强度平均提高了 42%。该玻璃化转变温度越高,热值越高,这将影响塑料链的排列和结晶度,并导致其物理性质发生变化。此外,研究结果表明,通过选择理想的工艺参数和后处理条件,可以大大提高热塑性材料的优化拉伸强度。
对流在各种天然和人为的过程中起着至关重要的作用,从而可以通过流体运动有效地传热。本综合指南提供了对流的可访问概述,其中包含实践示例,以说明其原理。,它是寻求阐明这一基本科学概念的教育工作者的宝贵资源。引人入胜且信息丰富,该指南非常适合增强对热动态的理解。对流涉及通过流体(液体或气体)的移动加热的转移,因为加热颗粒会上升,而较冷的颗粒下沉,从而产生圆形流动。这个过程对于理解自然现象和技术应用至关重要,这是物理,气象学和工程学的关键概念。对流的一个经典例子是在炉子上加热水,热水升至表面,冷水沉入底部,形成连续的循环,从而有效地在整个水中转移热量。对流传热的公式可以表示为q = haΔt,强调了诸如传热速率,对流传热系数,表面积和温度差等因素的重要性。这22个对流示例的汇编展示了从日常家庭活动到大规模环境模式的不同环境中的基本过程。冷却和冷凝时,温暖的空气会升起,形成云和降水。同样,随着热量从其表面散发的,一杯咖啡会冷却,而森林通过吸收热量并引起空气运动来调节气候。从沸水到洋流,大气循环,房屋中的散热器,热气球,海风,地球的披风对流,加热汤,熔融冰,熔岩灯,太阳能电池板,冰箱线圈,汽车辐射器和空调,每个例子都在行动中表明了暴力。在烤箱中,热空气循环均匀地煮食物,就像间歇泉爆发地下水被地热能加热一样。板块构造是由于地球核心的热量引起的,导致构造板的运动。房间风扇循环空气以调节室温,人体血液循环通过对流调节体温。对流不仅限于科学概念;它在我们的日常经历中起着作用。示例包括在炉灶上烹饪,洗热水淋浴,使用烤面包机,地板加热系统以及在生产线上晾干衣服。在现实情况下,对流冷却笔记本电脑,铁衣,在建筑物中提供自然通风,加热茶水和使用壁炉。对流还塑造大气现象,例如陆地和海风,云层,季风风,飓风地层以及山和山谷的微风。通过外部手段(例如风扇或泵)运动在工程,气象学和环境研究等各个领域都起着至关重要的作用。了解这些类型对于设计过程和系统至关重要。例子包括在沸水中的自然对流,供暖,海洋电流,冰箱中的空气循环以及风形成。在极端情况下,这些事件可能导致严重的雷暴,甚至龙卷风。对流还可以通过流体中分子的质量运动有效地传输热量,这使得在许多应用中至关重要。对流在塑造天气模式和影响日常生活中起着关键作用,从汽车冷却系统到工业冷却塔,太阳能热水板,地热加热系统,散热器加热器和冷凝器盘绕冰箱的冰箱。认识到对流的机制和示例强调了其在教育和实际情况下的重要性。当热量通过较热的材料与较冷的材料配对的较热材料的上升,因此会发生对流。这种现象涉及质量在流体中的运动,通常导致气象学的向上方向和地质地壳下地壳下方的慢速物质运动。对流在各种日常生活中起着至关重要的作用,包括开水,散热器操作,蒸杯热茶,冰融化,冷冻食物解冻,强迫对流等等。在气象学中,对流与天气条件(例如对流云和斜纹线条)紧密相关。此外,热空气气球依靠加热的空气升起来航行天空。理解对流的定义为探索其在不同研究领域的各种应用和发生的情况提供了坚实的基础。对流在各种自然和人为的过程中起着至关重要的作用。在热气球中,温度差异引起的浮力会随着热空气被困在里面而提升气球。要下降,其中一些热空气被释放,使较冷的空气进入并减少浮力。该原理也称为堆栈效应或烟囱效应,由于室内和室外空气之间的密度差异,空气进出建筑物。在地质学中,对流电流是地球地幔缓慢运动的原因。 内部的热量通过地幔升起,使其在表面冷却。 此过程驱动板块构造,导致火山形成。 重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。 海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。 在恒星中,对流区域在转移能量中起着至关重要的作用。 等离子体加热时,冷却的血浆下降时会产生循环模式。 对流不限于这些例子;可以在各种人类和自然现象中观察到。 既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。在地质学中,对流电流是地球地幔缓慢运动的原因。内部的热量通过地幔升起,使其在表面冷却。此过程驱动板块构造,导致火山形成。重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。在恒星中,对流区域在转移能量中起着至关重要的作用。等离子体加热时,冷却的血浆下降时会产生循环模式。对流不限于这些例子;可以在各种人类和自然现象中观察到。既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。
表面坡度不连续且悬在表面的高宽比突出特征(峰)对集成功能组件到具有复杂几何形状的物体上具有挑战性。或者,可以使用液体载体(例如浮在水中的转印膜,将物体浸入其上)将功能组件集成到具有复杂几何形状的物体上。但是,很难在复杂几何形状上精确沉积未首先在薄转印膜上形成的小组件阵列,因为与液体载体相比,每个阵列元素在薄膜上的移动相对受到限制。相比之下,打印和拾取放置过程在物体的几何形状方面更加灵活,但要求组件材料可打印或可抓取。这还要求以 3D 形式对物体进行数字映射,从而增加制造时间和成本。为了克服基于添加剂的表面改性工艺中仅使用固体或液体载体所带来的一些限制,Zabow 介绍了一种转移技术,用于将功能成分阵列以复杂的几何形状排列在目标上(例如,成分的周期性图案,与曲面相符)。该方法使用糖混合物作为可倾倒和可溶解的载体,工艺类似于制作硬糖的工艺。将加热的糖和玉米糖浆混合物冷却,但在凝固之前,将其倾倒在要整合到表面上的成分上,形成可熔的“印章”。Zabow 从倾倒和凝固步骤(铸造)开始,在此步骤中,将糖基载体在低温下倾倒在已在初始表面上以所需图案预先排列的功能成分(包括微尺度金属、聚合物和玻璃元素)上。然后,通过将印章慢慢融化在目标物体上(因此称为回流),将这些组件(现在嵌入硬化的糖混合物“印章”)转移。变形的糖混合物冷却并重新凝固后,用水冲洗掉糖混合物。由于该过程使用经历相变的载体,因此它提供了对固体载体的控制以及液体载体的几何匹配。因此,该技术消除了