淀粉样变性是指由不同蛋白质异常片段沉积引起的一系列疾病。心脏是最常见的淀粉样变性形式的主要受影响器官之一,预后不良且生存时间短,具体取决于参与程度。尽管被认为是一种罕见的疾病,但近年来诊断的数量显着增加。它为此做出了最大的非侵入性诊断库,在每日临床实践中已经塑造了更具体的评估工具,例如超声心动图,骨标记闪烁显像和心脏磁共振共振成像。传播疾病知识及其警告信号,以及与新药物治疗的到来有关的疾病指南的出现,改变了这些患者的自然病史。诊断和治疗旅程的减少允许这些患者的生存和生活质量提高。
s写作HDR是一种孤独的练习,本手稿中报道的工作是集体研究工作的结果。因此,我要感谢所有同事,研究人员,学生,技术人员,合作者,他们为这些研究工作做出了贡献。我特别要感谢我监督的论文工作的学生:Cora,Milena,Laulralie和Félix。您在许多领域都教了我很多东西,您的讨论有时会成为反思和教训的多产之源。也感谢Gaurav的热情,细致的工作和幽默感。MIAR与工作和建立项目非常愉快。感谢您的常规和完美的帮助,以及在我在世界另一端的实验室休假期间耐心地接管您的耐心,是遥远的山顶,或者...一只脚在石膏中!也非常感谢我们的经理们,他们知道如何将石油放在政府的齿轮中,尽管有相反的风和潮汐,也可以让我们前进,并且还赶上了Megarde犯下的小饺子。我特别要感谢我的导师,自从我在奥赛大学进行研究的第一步以来,直到我在达特茅斯学院的努力表现之前,他以友善的态度指导了我的研究,并能够唤醒我,然后维持我对发现和探索生活世界的热情。千感谢。伯纳德·萨吉尔(Bernard Saugier),奥利维尔·罗普萨德(Olivier Roupsard),让·加巴伊(Jean Garbaye),帕斯卡尔·弗雷·克莱特(Pascale Frey-Klett),弗朗西斯·马丁(Francis Martin),黛博拉·霍根(Deborah Hogan),你以自己的方式做到了,做梦,然后热爱这项工作。可以完成,我感谢陪审团的成员,尽管日程安排很忙,他们同意阅读和评估这项工作。仍然很抱歉千万的交流试图找到适合所有人的辩护日期。最后感谢我的小家人和山地朋友,他们知道如何提醒我,以至于如果科学是一种吞噬的激情,每天都有许多其他奇观可以生活和分享。
细胞是生物的最小功能和结构单位,从细菌到人类。他们具有区分形状和功能,形成不同的组织和器官,例如心脏,肺和皮肤。对于所有生物的生长,修复和繁殖,必须将细胞分裂和繁殖。这种细胞分裂过程是通过有丝分裂和减数分裂发生的。有丝分裂发生在体细胞中(除配子外,除了配子以外的所有细胞),其目的是生长,修复和替代受损细胞。在这个部门中,母细胞分为两个女儿细胞。该过程涉及多个步骤,例如DNA重复,姊妹染色体的分离和细胞质分裂,从而产生了两个与细胞的遗传相同细胞,也就是说,它们具有相同的DNA。
[5] K.J. Chhen,O.Häberlen,A。Flee,Sweep Linen Tsai,T。Ueda,Y。Uemoto,Y。Wu,Ieet Trans。 电子设备64,(2017)779。 [6] Y. Sun,X Age,Yeng,J Lu,X Tian,K Wei,H Wu,W.Wang,X。Franumer和G. Zhang,Electronics,vol。 8,不。 5,pp。 575,(2019)[7] j。 Y. Zhang,M。Sun,D。Piedra。 SCI。 半座。 Process。,78,75-84,(2018)。 Y. Zhang。 Sun,M。Liu,D。Piedra。 物理。 Lett。 110,193506(2017)。 F. Roccafort,F。Giannazzo,A SCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。[5] K.J.Chhen,O.Häberlen,A。Flee,Sweep Linen Tsai,T。Ueda,Y。Uemoto,Y。Wu,Ieet Trans。电子设备64,(2017)779。[6] Y.Sun,X Age,Yeng,J Lu,X Tian,K Wei,H Wu,W.Wang,X。Franumer和G. Zhang,Electronics,vol。8,不。5,pp。575,(2019)[7] j。 Y. Zhang,M。Sun,D。Piedra。SCI。 半座。 Process。,78,75-84,(2018)。 Y. Zhang。 Sun,M。Liu,D。Piedra。 物理。 Lett。 110,193506(2017)。 F. Roccafort,F。Giannazzo,A SCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。SCI。半座。Process。,78,75-84,(2018)。Y. Zhang。 Sun,M。Liu,D。Piedra。物理。Lett。 110,193506(2017)。 F. Roccafort,F。Giannazzo,A SCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。Lett。110,193506(2017)。 F. Roccafort,F。Giannazzo,A SCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。110,193506(2017)。F. Roccafort,F。Giannazzo,ASCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。SCI。半座。过程。94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。郑,Pr。佩里。8,pp。74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。74-83,2020 [11] L. Sang,B。Ren。物理。Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。Lett。111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。111,12102(2017)。[12] St. Li,B。Ercan,C。Director,H。Icda,电子。dev。69,4206(2022)。G. Giannazzo,F。Giannazza,固体状态A,215)(2018年),1700613。[14] P.V.Ray,C。Raynaud,C。Sound,A.J.E。Ray,C。Raynaud,C。Sound,A.J.E。no,H。Morel,L.V。Phung,T.H。 非政府组织,P.D。 Mierry,E。FrayersH. Maher,J。Tasselli,K。Sub-Morease,Y。Cordier,D。Plannon,Microelectron。 J. 128,(2022)1055。 [15] A.Sanduplata,S。Alummaran,G.I。 ng,K。Ranjan。 物理。 展开。 13,074001(2020)。 [16] Z. Shi,X。Xiang,H。Zhang,Q.。 He,G。Jian,K。Zho,X。Zho,Xing,G。Xu,Smicond。 SCI。 树。 37(2022)065010。 [17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。 电子。 dev。 69,1938(2022)。 [18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。 iRet,t。 Calsounis,M。Charles,N。Rohat,C。Snails,V。 [19] T.H. ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G. 谴责,F。Roccafort,物理。 状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。 冲浪。 SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。Phung,T.H。非政府组织,P.D。 Mierry,E。FrayersH. Maher,J。Tasselli,K。Sub-Morease,Y。Cordier,D。Plannon,Microelectron。 J. 128,(2022)1055。 [15] A.Sanduplata,S。Alummaran,G.I。 ng,K。Ranjan。 物理。 展开。 13,074001(2020)。 [16] Z. Shi,X。Xiang,H。Zhang,Q.。 He,G。Jian,K。Zho,X。Zho,Xing,G。Xu,Smicond。 SCI。 树。 37(2022)065010。 [17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。 电子。 dev。 69,1938(2022)。 [18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。 iRet,t。 Calsounis,M。Charles,N。Rohat,C。Snails,V。 [19] T.H. ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G. 谴责,F。Roccafort,物理。 状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。 冲浪。 SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。非政府组织,P.D。Mierry,E。FrayersH. Maher,J。Tasselli,K。Sub-Morease,Y。Cordier,D。Plannon,Microelectron。J.128,(2022)1055。[15] A.Sanduplata,S。Alummaran,G.I。ng,K。Ranjan。物理。展开。13,074001(2020)。[16] Z. Shi,X。Xiang,H。Zhang,Q.。He,G。Jian,K。Zho,X。Zho,Xing,G。Xu,Smicond。SCI。 树。 37(2022)065010。 [17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。 电子。 dev。 69,1938(2022)。 [18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。 iRet,t。 Calsounis,M。Charles,N。Rohat,C。Snails,V。 [19] T.H. ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G. 谴责,F。Roccafort,物理。 状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。 冲浪。 SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。SCI。树。 37(2022)065010。 [17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。 电子。 dev。 69,1938(2022)。 [18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。 iRet,t。 Calsounis,M。Charles,N。Rohat,C。Snails,V。 [19] T.H. ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G. 谴责,F。Roccafort,物理。 状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。 冲浪。 SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。树。37(2022)065010。[17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。电子。dev。69,1938(2022)。[18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。iRet,t。Calsounis,M。Charles,N。Rohat,C。Snails,V。[19] T.H.ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G.谴责,F。Roccafort,物理。状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。冲浪。SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。SCI。314(2014)546–551。https://doi.org/10.1016/j.apsusc。 SCI。 SCI。https://doi.org/10.1016/j.apsusc。SCI。 SCI。SCI。SCI。SCI。F. Roccafort,F。Giannazzo,A半座。过程。94(2019)164–170。 https://doi.org/10.1016/j.mssp。 [23] R. T. Tung,Mater。 Eng。,R。35.1(2001)。 JP [24] J. P. Sun,R。M。R. Pinto和W. R. Graham,J。Apple。 物理。 70,7403(1991)。 [25] R. F. F. SCI。 树。 B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。 物理。 93,9137(2003)。 F. Roccafort,G。Greco,P。 冲浪。 SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。94(2019)164–170。https://doi.org/10.1016/j.mssp。 [23] R. T. Tung,Mater。 Eng。,R。35.1(2001)。 JP [24] J. P. Sun,R。M。R. Pinto和W. R. Graham,J。Apple。 物理。 70,7403(1991)。 [25] R. F. F. SCI。 树。 B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。 物理。 93,9137(2003)。 F. Roccafort,G。Greco,P。 冲浪。 SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。https://doi.org/10.1016/j.mssp。[23] R. T. Tung,Mater。Eng。,R。35.1(2001)。JP [24] J. P. Sun,R。M。R. Pinto和W. R. Graham,J。Apple。物理。70,7403(1991)。[25] R. F. F.SCI。 树。 B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。 物理。 93,9137(2003)。 F. Roccafort,G。Greco,P。 冲浪。 SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。SCI。树。 B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。 物理。 93,9137(2003)。 F. Roccafort,G。Greco,P。 冲浪。 SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。树。B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。物理。93,9137(2003)。F. Roccafort,G。Greco,P。冲浪。SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。SCI。606(2022)154896 [28] G. Greek,P。物理。129(2021)234501。M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。d:应用。物理。54(2021),055101。F. A. A. Padovani和R. Stratton,固态。9,(1966)695 [31] H. Kim; J. Electron。mater。50,(2021)6688–6707。
1.0 简介 本地方规划为威格敦和布拉德诺赫制定了雄心勃勃的十年愿景。社区对在未来 10 年内将威格敦和布拉德诺赫重建并发展为一个充满活力和韧性的社区的机会感到兴奋。威格敦也是邓弗里斯和加洛韦受邀参与边境地区地方规划项目的 5 个城镇之一,该项目为制定地方规划提供了激励,因为该镇可以通过边境地区发展协议申请资金。地方地方规划由皇家自治市和威格敦社区委员会区发起。社区委员会获得资金,聘请顾问与城镇团队合作,支持地方地方规划的制定。社区委员会的修订设立计划作为本声明的附录。成立了一个城镇团队来协调和推动当地空间规划的发展,其成员来自社区的各种企业和当地组织,具体如下:Sandra McDowall(召集人)、Nicole Court(副召集人兼住宿企业)、Ada Montgomery(社区委员会)、Anne Barclay(威格敦图书节)、Carol Lochrie(Machars Action)、Caroline Schofield(威格敦保龄球俱乐部)、Cora Sharp(威格敦小学)、Gill Hay(市场)、Alison Adams 和 Shona Herries(Lightlands 公园倡议)、Paul Tarling(社区委员会)、Pete Dobson(威格敦和 Bladnoch 社区倡议)Shaun Bythell(书商协会)。2.0 我们的当地空间规划区域下图中以蓝色标出的区域为有资格通过边境增长计划获得资金支持的区域。社区被问及他们希望看到的当地地方规划边界是什么,并同意将边界用黑色表示,因为它包括与
糖尿病的一般概念是一种慢性疾病的慢性疾病,影响了世界上超过1.7亿人。,在2030年中,有超过3.6亿人受到这种疾病的影响。日本糖尿病学会的委员会2个概念糖尿病作为一组疾病,其特征是高血糖,这是由于胰岛素的作用。根据该委员会的说法,胰岛素作用的不足(糖尿病的共同基础)导致碳水化合物代谢,脂质,蛋白质等的特征异常。通过其专业委员会,美国糖尿病3协会将糖尿病定义为一组代谢性疾病,其特征是高血糖,这是由于缺陷,年龄或功能障碍引起的,并且导致各种器官,通常是眼睛,肾脏,肾脏,神经,心脏和血管的障碍。是一种内分泌起源的疾病,更具体地说是胰岛素分泌或作用中的缺陷,胰腺β细胞产生的激素,让我们首先检查这种激素的特征。
血色素沉着症是一种铁元货物的遗传性疾病,它是由于肝素 - 有洛普尔素轴的遗传缺陷引起的,具有可变的渗透率,因此是临床异质性。在肝,心脏,胰腺,关节和内分泌器官的水平上铁不受控制的吸收和过载风险。患者有肝硬化和肝癌进化的风险。在症状,家族史或血清铁标记升高的情况下,应怀疑在转铁蛋白饱和结束时。诊断对于临床表现和血清铁标记的意外意外挑战。有几个基因涉及,但是HFE是最经常受到影响的;与铁超负荷诊断相关的纯种同志C282Y;其他遗传变异可能需要通过磁共振成像或肝活检进行折衷研究。优先治疗是静脉切开术,或者是红细胞发作或铁螯合。它们具有高发病率和死亡率,可以随着治疗的开始而降低。
抽象性缺血性心脏病(DCI)是一种疾病,通常是由于冠状动脉阻塞而造成的。多个因素,例如全身动脉高血压,糖尿病,吸烟,身体不活跃和肥胖,有利于内皮功能障碍,并增加了动脉渗透性对胆固醇分子的粘附和沉积。CDI的主房屋是动脉粥样硬化,这是动脉亲密外衣中的动脉瘤板。然而,具有非攻击性冠状动脉(iMacne)的心肌梗塞也是CDI的重要原因。关于临床表现,它们包括心绞痛,努力呼吸困难,疲劳,呼吸症和症状,例如恶心,呕吐,出汗,晕厥。CMD的诊断涉及临床评估,实验室测试,心电图,牙现代测试,经胸膜超声心动图和冠状动脉血管造影。治疗方法旨在控制症状,危险因素控制并预防心血管现象。药理学方法使用抗platelets,他汀类药物和β-释放器等药物来降低危险因素并防止疾病进展,此外
摘要:妊娠糖尿病(DG)代表了孕产妇和胎儿健康的重大挑战。母体高血糖(DG的特征)会引发一系列并发症,包括胎儿发育和心脏功能障碍的变化。胎儿心脏功能障碍反过来可能会增加成年后围产期发病率和心血管疾病发育的风险。了解DG影响胎儿心脏功能和心血管发育的机制对于开发有效的管理策略至关重要。目的:本系统文献综述的目的是识别并综合有关妊娠糖尿病,胎儿心脏功能和心血管发展之间关系的可用科学证据,目的是为临床实践和未来研究提供补贴。方法论:根据PRISM声明的建议进行了系统的文献综述,目的是确定研究妊娠糖尿病与胎儿心脏功能之间关系的研究。使用了以下描述符:“妊娠糖尿病”,“胎儿心脏功能”,“胎儿发育”,“胎儿超声心动图”和“胎儿并发症”。搜索仅限于过去10年中发表的文章。纳入标准是:以葡萄牙或英语发表的原始研究,评估了诊断为妊娠糖尿病的孕妇的胎儿心脏功能。排除标准是:系统的修订,荟萃分析,案例研究以及未评估胎儿心脏功能的研究。结果:审查结果表明,妊娠糖尿病与胎儿心脏功能障碍的风险增加有关,其特征是胎儿心脏结构和功能的变化,例如左心室肥大,心房扩张和心输出量的变化。此外,DG可能导致胎儿血管发育的变化,并增加宫内生长限制和围产期并发症的风险。结论:妊娠糖尿病对胎儿心脏功能和心血管发育有重大影响。慢性产妇高血糖会引发一系列代谢和血液动力学变化,从而损害胎儿心脏的正常发育。早期DG诊断和对母体血糖水平的严格控制对于最大程度地降低胎儿的风险至关重要。但是,需要进一步的研究来阐明涉及的病理生理机制并制定新的预防和治疗策略。