1902 年,在入学疫苗接种要求成为常态之前,马萨诸塞州剑桥市通过了一项法规,要求所有居民接种天花疫苗。一名叫亨宁·雅各布森 (Henning Jacobson) 的男子因拒绝接种疫苗而被罚款。雅各布森对该法规提出质疑,部分声称该市无权强制接种疫苗,这侵犯了他的自由。雅各布森在州法院败诉后,向美国最高法院上诉,最高法院做出了有利于剑桥的裁决,并确立了至今仍被依据的重要公共卫生先例(雅各布森诉马萨诸塞州)。5 在雅各布森案中,最高法院裁定,允许剑桥采用疫苗强制令的州法律是美国宪法中保留给各州的警察权的有效行使,并且“美国宪法保障的自由……并不意味着每个人在任何时候、任何情况下都享有完全不受束缚的绝对权利。为了公共利益,每个人都必须受到多方面的限制。”6 换句话说,剑桥可以要求居民接种天花疫苗,因为有强有力的科学共识认为,为社区中尽可能多的人接种疫苗将有助于遏制天花的传播,并且社区这样做的利益压倒了雅各布森个人的反对意见。
人工智能在预测整形外科皮瓣结果中的作用:系统评价方案 Sabreena Moosa,医学博士候选人 [1]*,Robert Dydynsky,医学博士候选人 [1] [1] Michael G. DeGroote 医学院,麦克马斯特大学,汉密尔顿,ON L8S 4K1 *通讯作者:sabreena.moosa@medportal.ca 简介:游离皮瓣手术包括重建各种组织缺损。皮瓣失败和感染、缺血等并发症仍然是皮瓣手术后令人担忧的问题,目前的术后护理标准是频繁的床边监测。机器学习模型等人工智能可以帮助外科医生进行术后监测和预测并发症。本系统评价的目的是提供一个框架,用于分析使用人工智能评估皮瓣手术结果和预测术后并发症的现有文献。方法:将使用 EMBASE 和 MEDLINE(1974 年至 2021 年 10 月)进行系统回顾,以确定相关文献。这将包括研究皮瓣手术术后环境中使用的人工智能和机器学习模型的研究。主要结果将包括评估基于这些模型评估皮瓣手术后结果的准确性,包括:皮瓣成功率、愈合和术后长达 1 个月的并发症。次要结果包括分析使用机器学习模型评估皮瓣手术后结果的利弊。研究将由两名独立审阅者筛选;将使用 Cochrane 偏倚风险工具评估偏倚风险,并使用 QUADAS-2 工具评估方法学质量。讨论:该协议将提供综述框架,总结当前探索人工智能对皮瓣手术结果的作用的文献。结果将有助于为外科医生提供当前应用的概述,并确定潜在的进一步研究和开发领域。结论:由于目前的临床实践是定期的床边监测,整合人工智能可以使该过程对患者更高效、更准确、更安全,并减少劳动力负担或医疗保健系统成本。本综述有助于确定潜在和改进的领域,从而进一步帮助实现皮瓣手术后的成功结果。关键词:人工智能;机器学习;皮瓣手术;结果;并发症;术后;监测;皮瓣成功介绍皮瓣手术
通讯作者 Mohamed M. Abuzaid,mabdеlfatah@sharjаh.ac.ae 人工智能 (AI) 对物理治疗实践的影响:物理治疗师意愿和准备度研究 1 沙迦大学健康科学学院医学诊断成像系,阿联酋沙迦 2 沙迦大学健康科学学院物理治疗系,阿联酋沙迦 3 开罗大学物理治疗学院,埃及开罗 摘要:分析人工智能 (AI) 的现状是将其融入物理治疗实践的关键第一步。因此,本研究旨在评估物理治疗师 (PT) 对 AI 实施的看法、知识和接受意愿。 2021 年 10 月至 12 月,对在阿拉伯联合酋长国 (UAE) 工作的 PT 进行了探索性横断面在线问卷调查。先前经过验证的调查收集了参与者的人口统计信息、看法、知识、准备情况以及将 AI 融入实践的挑战。结果显示,PT 对 AI 的了解相当匮乏。大多数参与者都赞赏 AI 应用的作用,并期望它将在实践中发挥重要作用。参与者指出,缺乏教育资源和适当的培训是 AI 整合的主要挑战。参与者表达了将 AI 纳入本科和研究生课程的强烈愿望。将 AI 融入物理治疗实践的兴奋需要努力为学生和专业人士提供教育和培训。物理治疗师担心,通过适当的准备来提高对 AI 角色和挑战的认识,可以消除工作干扰。将 AI 应用于 PT 实践将塑造物理治疗师的医疗保健服务和教育的未来。AI 将为患者和提供者提供更快的诊断、更好的性能和准确的结果。即使在人工智能在物理治疗中实施的早期阶段,人工智能的应用也提出了问题并增加了期望。关键词:人工智能、深度学习、物理治疗、物理治疗师、知识、实践。 人工智能在物理治疗实践中的影响:物理治疗师愿意和准备情况的研究
摘要:航空业的快速发展导致全球对飞行员的需求逐年增加。飞行员就业率的提高促使所有航空公司满足组织的需求,从而影响工作满意度。现在,航空业管理层非常关注机组人员的工作生活质量问题,因为它与员工行为有关。机组人员的工作满意度描述了工作提供的满足感程度,它是每个机组人员的乐趣来源或手段。工作满意度很重要,因为它代表了机组人员对工作感到积极或消极的程度。有许多研究显示工作满意度水平。然而,很少有研究清楚地展示和讨论过在航空业工作的机组人员的工作生活质量。因此,本研究旨在强调在航空业工作的机组人员的工作生活质量。分析了书籍、期刊和文章中的所有数据。结果表明,工作意义因素对在航空业与商业航空公司合作的机组人员的工作满意度影响最大。另一方面,机组人员满意度最低的方面与奖励和公平性有关。
牙医对人工智能在牙科领域的作用和未来的认识和看法 ISMA SAJJAD 1 , YAWAR ALI ABIDI 2 , NABEEL BAIG 3 , HUMERA AKHLAK 4 , MAHAM MUNEEB LONE 5 , JAMSHED AHNED 6 1 助理教授 牙科手术 信德口腔健康科学研究所,真纳信德医科大学 2 院长,牙科手术系主任 信德口腔健康科学研究所,真纳信德医科大学 3 高级执行官 部门:研究评估部 巴基斯坦医师和外科医生学院 4 病理学助理教授 信德口腔健康科学研究所,真纳信德医科大学 5 助理程序 牙科手术 信德口腔健康科学研究所,真纳信德医科大学 6 讲师 牙科手术Sajjad,电子邮件:isma.sajjad@jsmu.edu.pk,手机:03337593872
摘要:最近,阿联酋已在包括教育在内的多个领域采用了人工智能 (AI) 和电子学习系统。除了采用传统教育系统的机构外,军事学院也采用了这项新技术。本研究评估了阿联酋军事学院采用基于 AI 的电子学习系统的现状、挑战和策略。这项研究是基于联合指挥参谋学院 (JCSC) 师生的看法进行的。向 50 名教师和 157 名学生提出了一组问题,以强调每个问题的同意程度。问题分为三个部分,即采用程度、挑战和使用基于 AI 的电子学习教育系统的策略。研究发现,就目前情况而言,由于高度的灵活性,AI 和电子学习在教育系统中非常受欢迎。尽管存在挑战,但师生之间缺乏人际关系被认为是采用基于 AI 的电子学习系统面临的主要挑战。最后,关于策略,受访者表示,阿联酋正在努力制定计划和替代方案,以解决军事学院采用的传统教学和人工智能方法之间的差异。这项研究为制定促进这些现代工具使用的策略提供了宝贵的信息来源,并激励学生最大限度地利用人工智能和电子学习技术。关键词:人工智能的挑战和策略、电子学习、军事学院、阿联酋
摘要:本文重点评估在电子学习中采用人工智能 (AI) 技术的关键成功因素 [CSF]。这是一项基于阿拉伯联合酋长国联合指挥参谋学院 (JCSC) 学生和教师看法的定量评估研究。数据是通过问卷调查收集的,问卷分发给了学院共 240 名 JCSC 学生和教师,但只收到了 207 份填写完整的表格。问卷包含 7 组 20 个 CSF,使用 5 点李克特量表调查每个 CSF 在采用 AI 和电子学习中的重要性水平。使用 SPSS 软件包对数据进行了描述性分析。分析结果发现,在调查中考虑的 20 个 CSF 中有 18 个被报告为高度重要。最重要的关键成功因素是“人工智能系统能够计算大数据以改善教学”,阿联酋军事学院在电子学习中采用人工智能技术的平均得分最高,为4.04。在因素组方面,最重要的因素组是“让教育更有趣”,平均得分为3.98。然而,进一步分析发现,学历较高的受访者选择了个性化因素组,而教学经验丰富的受访者选择了绩效监控因素组作为最关键的成功因素组。本研究的结果对于制定在教育系统中推广人工智能先进技术的策略并获得最大收益非常有帮助。关键词:人工智能、电子学习、阿联酋军事学院
通过分层相关性传播增强核电站 AI 模型的可解释性 Seung Geun Kim a*、Seunghyoung Ryu a、Hyeonmin Kim b、Kyungho Jin b、Jaehyun Cho ba 应用人工智能实验室/b 韩国原子能研究院风险评估与管理研究团队,韩国大田儒城区大德大路 989 号街 111,34057 * 通讯作者:sgkim92@kaeri.re.kr 1.简介 随着人工智能 (AI) 技术的快速发展,各个领域的应用数量巨大。核领域也紧跟这一趋势,许多研究利用 AI 模型解决事件诊断和自动/自主操作等问题。然而,占据近期 AI 技术应用最大份额的深度神经网络 (DNN) 具有不透明且可解释性低的局限性。对于基于 DNN 的模型,很难了解模型的内部逻辑或模型如何从给定的输入推断出输出。由于这一限制,尽管基于 DNN 的模型的性能可以接受,但人们对将其实际应用于安全关键领域和与道德/法律问题相关的领域仍犹豫不决。为了克服可解释性低的限制,已经提出了许多可解释的人工智能 (XAI) 方法。XAI 方法可以提供详细的解释,例如模型的内部逻辑和输入与输出之间的关系。然而,尽管可解释性问题对于安全关键的核领域至关重要,但缺乏处理 XAI 的研究。在本研究中,为了提高核领域人工智能模型的可解释性和实用性,研究了分层相关性传播 (LRP) [1],它是 XAI 方法之一,与其他 XAI 方法相比,它在许多应用中表现出更好的性能。论文的其余部分组织如下。在第 2 章中,对 XAI 和 LRP 进行了简要说明。第 3 章描述了可行性检查实验,第 4 章总结了本文。 2. 前言 2.1 可解释人工智能 可解释人工智能 (XAI) 是一种使人类轻松理解 AI 模型的技术。大多数 AI 模型在数据处理和解决问题的方法方面与人类不同。例如,AI 模型识别具有像素 RGB 值的图像,而人类则不能。提出 XAI 是为了减轻理解 AI 模型内部过程或推断某些输出的原因的难度。
对话角色对语音 AI 和人类对话者语音对齐的影响 标题:角色和对话者影响对齐 Georgia Zellou、Michelle Cohn 和 Tyler Kline 语音实验室,加利福尼亚大学戴维斯分校语言学系 469 Kerr Hall,One Shields Ave.,戴维斯,CA 95616,美国 通讯作者电子邮件:gzellou@ucdavis.edu 摘要 两项研究调查了对话角色对人类和语音 AI 对话者语音模仿的影响。在单词列表任务中,给予者指示接收者将单词放在两个列表中的哪一个上;这个对话任务类似于用户与语音 AI 系统进行的简单口头交互。在地图任务中,参与者与对话者一起完成填空工作表,这是一项更复杂的交互任务。参与者与两个对话者完成了两次任务,一次作为信息提供者,一次作为信息接收者。通过相似性评级评估语音对齐,并使用混合效应逻辑回归进行分析。在单词列表任务中,参与者在更大程度上仅与人类对话者保持一致。在地图任务中,仅作为给予者的参与者更多地与人类对话者保持一致。结果表明,语音对齐由对话者的类型介导,并且对话角色的影响因任务和对话者而异。关键词:语音对齐、语音-AI、人机交互、对话角色
医学研究中人工智能的报告指南 J. Peter Campbell, MD, MPH、Aaron Y Lee, MD, MSCI、Michael Abràmoff, MD、Pearse A. Keane, MD, FRCOphth、Daniel SW Ting, MD PhD 和 Michael F. Chiang, MD 资金支持:JPC 和 MFC 得到美国国立卫生研究院 (马里兰州贝塞斯达) 的 R01EY19474、R01EY031331、K12EY027720 和 P30EY10572 的支持;以及防盲研究 (JPC) 的无限制部门资金和职业发展奖的支持。AYL 得到 NIH/NEI K23EY029246、NIH P30EY10572 和防盲研究的无限制拨款的支持。赞助商/资助组织未参与本研究的设计或实施。财务披露:Michael D Abramoff,IDx(I、F、E、P、S)、Alimera(F)。J. Peter Campbell,Genentech(F)。Aaron Y Lee,美国 FDA(E)、Genentech(C)、Topcon(C)、Verana Health(C)、Santen(F)、Novartis(F)、Carl Zeiss Meditec(F)。Pearse A. Keane,DeepMind Technologies(C)、Roche(C)、Novartis(C)、Apellis(C)、Bayer(F)、Allergan(F)、Topcon(F)、Heidelberg Engineering(F)。Daniel Ting,EyRIS(IP)、Novartis(C)、Ocutrx(I、C)、Optomed(C)。通讯作者:Michael F Chiang 地址?联系方式?