免责声明本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构的观点或加利福尼亚大学的摄政。欧内斯特·奥兰多·劳伦斯·伯克利国家实验室是机会均等的雇主。
•الب萝卜•印度尼西亚巴哈萨•čeština•deutsch•español•français•français•한국어•intaliano•magyar•magyar•norsk•norsk•norsk•polski•polski•poluguês(brasil)(brasil) • 中文 ( 繁体 )
● 基于最近关于化石燃料燃烧对全球空气污染物水平的贡献以及空气污染对健康的影响的研究进展,首次对化石燃料造成的空气污染的全球经济成本进行评估。● 据估计,2018 年化石燃料造成的空气污染的经济成本为 2.9 万亿美元,占全球 GDP 的 3.3%,远远超过快速减少化石燃料使用可能产生的成本。● 据估计,2018 年有 450 万人因接触化石燃料造成的空气污染而死亡。平均而言,每例死亡导致寿命损失 19 年。● 化石燃料 PM2.5 污染造成 18 亿天的工作缺勤、400 万例儿童哮喘新发病例和 200 万例早产,以及影响医疗成本、经济生产力和福利的其他健康影响。
呼吸雅加达主要合作伙伴生命策略,总部位于纽约市,是国际公共卫生组织。重要战略制定并监督计划,以加强公共卫生系统并解决发病率和死亡率的主要原因,在项目实施和管理,战略沟通,流行病学和监视以及其他核心公共卫生能力方面提供专业知识。至关重要的战略环境卫生部采用公共卫生工具,以告知政策,以支持生活在一个日益城市化世界中的人们。大多数重要的策略活动基于非洲,拉丁美洲,亚洲和太平洋的低收入和中等收入国家和城市。活动基于非洲,拉丁美洲,亚洲和太平洋的低收入和中等收入国家和城市。请访问我们的网站www.vitalstrategies.org,以了解有关我们工作的更多信息。
我们提出了一种基于微型,能量,低成本的单光子凸轮的测量值来重建任意兰伯特对象的3D形状的方法。这些摄像机作为时间解析的图像传感器运行,用非常快速的脉冲脉冲融合了光,并记录了该脉冲的形状,因为它以高时间分辨率从场景中返回。我们提出了模拟此图像形成过程的建模,解释其非理想性,并适应神经渲染以从一组具有已知姿势的空间分布的传感器中重建3D几何形状。我们表明,我们的方法可以从模拟数据中成功恢复复杂的3D形状。我们利用商品代理传感器的测量结果来证明实际捕获的3D对象重建。我们的工作在基于图像的建模和活动范围扫描之间建立了连接,并通过单光子摄像机朝着3D视觉提供了一步。我们的项目网页位于https://cpsiff.github.io/ toug_3d_vision/。
摘要生成模型最近彻底改变了机器学习,并长期以来一直认为是生物智能的基础。在动物中,数据表明海马形成学习并使用生成模型来支持其在空间和非空间记忆中的作用。在这里,我们引入了海马形成的生物学上合理模型,该模型将我们应用于连续的输入流中的Helmholtz机器。快速theta波段振荡(5-10 Hz)门通过网络流动的方向,训练它类似于高频唤醒式睡算法。我们的模型可以从感觉刺激中准确地推断潜在状态,并在离线上产生逼真的感觉预测。在导航任务上接受了训练,它通过开发环圈吸引子来学习可以集成的导航任务,并可以在与以前的理论但生物学上难以置信的建议之间灵活地传输这种结构。虽然许多模型具有一般性的生物学合理性,但我们的模型在一个简单和局部的学习规则下捕获了各种海马认知功能。
• 粒子漂移的方向从一个太阳黑子周期变化到下一个周期。 • 对于 A>0,当 GCR 进入日光层时,漂移将它们带向两极并沿着电流片向外移动。 • 对于 A<0,模式相反(“A 负”)
检测化学和生物物质,以涉及各种应用方案,例如可穿戴电子设备,智能点(POC)诊断,环境监测等。[1,2]要适当地满足这些新兴要求,理想的生化传感器应具有诸如高灵敏度,长期鲁棒性,快速响应,实时监测能力,出色的选择性,低单位成本,检测下限,较大的动态范围,低功耗等等等特性[3]但是,人类仍然需要进行陡峭的攀登之旅才能实现这些目标。值得注意的是,2019年冠状病毒病的全球大流行(Covid-19)表明,我们的技术储备在满足这种紧急,庞大和多功能的要求方面并没有充分准备,并引起了对生化感测技术的极大关注。迄今为止,包括化学主义的几种主要技术路线,[4,5] plasonic,[6,7]电化学,[8,9]声传感器,[10,11]等。已经开发出来,每个传感器中的每一个都在某些上述方面具有针对各种实际应用方案的特定优点。纳米制造技术的快速开发用于不同材料和各种结构,由于其小特征和主动结构特性,例如高地表到数量,独特的物理特性,独特的物理特性等,戏剧性地增强了这些传感设备的性能。[12–14]
