视线(LOS)导航是一种光学导航技术,可利用从车载成像系统获得的可见天体的方向,以估算航天器的位置和速度。将方向馈送到估计过滤器中,其中它们与观察到的物体的实际位置匹配,该位置是从船上存储的胚层检索的。作为LOS导航代表了下一代深空航天器的一个真正有希望的选择,这项工作的目的是提供有关效果的新见解。首先,分析信息矩阵以显示航天器和观察到的行星之间的几何形状的影响。然后,使用Monte Carlo方法来研究测量误差的影响(范围从0.1到100 ARCSEC)和跟踪频率(从每天的四个观测值到每两天的观察范围)。通过两个指标对导航性能的影响进行了影响。首先是3D位置和速度均方根排出,一旦估计被认为是稳态的。第二个是收敛时间,它量化了估算到达稳态行为所需的时间。模拟基于一组四个行星,这些行星不遵循共同的以heliepentric动力学的速度,而是绕太阳旋转,并以相同的(无距离)角速度的角速度旋转。这种方法允许将方案依赖性行为与导航固有属性分开,因为在整个模拟过程中观察者和观察到的对象之间的相同几何形状是相同的相对几何形状。结果为下一代自主导航系统提供了有用的指南,既可以定义硬件要求和设计适当的导航策略。然后将注意事项应用于近地球小行星的任务方案,以定义导航策略和硬件要求。显示了航天器和行星之间相对角度的重要性。在单个球衣观察方案中,当航天器和行星的位置向量之间的角度接近无效的值时,估计误差会降低。在双行星观察方案中,当两个LOS方向之间的分离角接近90时,估计误差会降低。对性能的主要影响是由测量误差驱动的,当前技术被证明能够以几百公里的顺序提供位置误差,而较低的测量误差(0.1 ARCSEC)可能在100 km以下的位置误差。最后,可以证明跟踪频率在性能中起次要作用,并且只有在收敛时间明显地影响。2022 cospar。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
对西班牙太空活动起源的研究表明,西班牙从一开始就加入了欧洲太空计划,而这超出了该国当时的财政和技术资源,使得该计划起步艰难,几乎摧毁了该计划背后的梦想。对这一早期阶段的分析表明,该计划很大程度上归功于外部因素,西奥多·冯·卡门教授对西班牙的高度尊重以及他那些年与西班牙航空当局和调查人员的频繁接触可能起到了重要作用。他是美国和其他地方许多成就的推动力,也可能为西班牙航空当局提供了最初的推动力。然而,并非所有政治当局都同样热情——在那些年里,只要这项新活动对可用的少量资源提出哪怕是最微小的要求,就会有人试图中止它。尽管资源分配不足,但该计划最终还是获得了批准。批准的主要原因是西班牙政权加入一个享有盛誉的欧洲组织具有政治价值,并且西班牙开始与 NASA 合作——另一项享有很高政治声誉的活动——这显然有利于与欧洲其他国家进行平行合作。因此,NASA 是第二个必须承认其影响力的外部参与者。西班牙太空活动的发展以早期参与者的大量和持续努力以及那些自愿决定参与和投资的行业和机构部门为标志。根据投资数据,大量资金支持和对这项活动发展潜力的理解相对较新,可以追溯到 1988 年左右。从那时起,西班牙对研发活动的支持一直保持在前所未有的水平。这在很大程度上要归功于 ESA,因此它是第三个得到承认的外部参与者,还应该记住,ESRO 在 1967 年给予了大力支持,当时西班牙面临着相当大的压力,要求其退出该组织。这种外部支持表明,太空活动本质上是跨国的,而且人们普遍认为如此。在科学领域,许多团体已经熟悉了几年前科学界无法触及的课题,其中一些团体今天正在领导欧洲实验。然而,情况正在发生变化。这项持续的努力取得了显著成果:数千名专业人员接受了最先进的技术水平的工业培训;工业可用的技术资源和机构的实验能力也得到了同步改善;创造了有助于国家财富的产品和服务,而这些产品和服务在十年前还闻所未闻;开创性地将西班牙行政、工业和大学的一个重要部门整合到欧洲。此外,作为这项活动的另一个结果,西班牙成为许多新的重要组织的成员,既有欧洲组织(欧洲空间组织、欧洲气象卫星组织、欧洲通信卫星组织、阿丽亚娜空间组织),也有国际组织(国际通信卫星组织、国际空间站组织、国际空间站组织、国际海事卫星组织)。结果是,现在西班牙的航天领域已经达到了临界规模,确保了这项活动在西班牙的光明未来。如果西班牙不是欧洲航天局的成员,这一切都不会发生。航空航天业的持续整合对欧洲航天部门产生了重大影响,重要的是要明白现在必须做出决定——决定未来的政策是否应该完全局限于这些新跨国公司提出的融资建议,或者是否愿意建立和支持所有欧洲国家共同的单一竞争政策。这是要解决的问题
前言 我非常高兴地介绍印度国家空间研究委员会 (INCOSPAR)、印度国家科学院 (INSA) 和印度空间研究组织 (ISRO) 为 2024 年 7 月 13 日至 21 日在韩国釜山举行的第 45 届 COSPAR 科学大会准备的《印度空间研究报告》。该报告概述了 2022 年 1 月至 2023 年 12 月期间印度在近地空间、太阳、行星科学和天体物理学几个领域取得的重要成就、成果和研究活动。本报告还介绍了空间科学研究能力建设活动、空间科学和技术学术课程、空间科学和技术方面的国家和国际合作、在各个研究所和中心建立的为印度空间科学探索和研究做出贡献的实验室和设施,等等。印度空间科学界一直活跃于天文学和天体物理学、太阳物理学、空间天气和日地关系、空间和大气科学、行星科学、地磁学和地球科学等领域。本报告介绍了海洋学、大气结构和动力学、云和对流系统、气溶胶、辐射和微量气体、天气和气候变化、中层大气、电离层、磁层、太阳风和空间天气、月球和行星研究、太阳和太阳系天体、恒星、星系、银河系和河外天文学和宇宙学等领域的研究重点。在行星科学领域,2023 年 8 月 23 日,月船三号在月球南部高纬度 Shiv-Shakti 点软着陆,使印度成为第四个掌握月球软着陆技术的国家,但却是第一个在南极地区实现软着陆的国家。月船三号收集了着陆点附近元素组成、热物理性质、等离子体环境和地震活动等一个农历日的数据。成功演示了从月球表面跳跃、从月球轨道脱离到地球轨道,这将为未来的样品返回铺平道路。月船二号轨道器已运行五年,为月球科学提供了新的见解。AstroSat 是印度首个多波长太空天文观测站,已于 2023 年 9 月 28 日成功完成八年运行。该观测站自 2016 年 10 月起以提案方式运行,并向天文学界开放。目前,AstroSat 拥有来自 50 个国家的约 2700 名用户。在最初的八年中,AstroSat 观测已产生了 440 多份同行评审出版物,以及 1500 多份会议论文集、GCN 通告、天文学家电报和其他非同行评审出版物。在此期间,AstroSat 数据得出的一些主要科学成果包括利用 UVIT 发现遥远矮星系中的扩展发射,2018 年爆发衰退阶段,变貌活跃星系 NGC 1566 的光谱跃迁,以及对 OJ 287 火焰星光谱状态的多波长观测。Aditya-L1 于 2023 年 9 月 2 日发射,是印度首次从日地系统拉格朗日点 1 (L1) 研究太阳的太空任务。该任务搭载七个有效载荷来观察光球层、色球层和日冕,为观察太阳活动及其对空间天气的影响提供了更大的优势。Aditya-L1 在 2024 年 5 月捕获了太阳事件(耀斑和日冕抛射)。印度的 X 射线偏振测量任务 XPoSat 于 2024 年 1 月 1 日发射,已开始进行科学观测,其中包括由 XPoSat 上的 X 射线偏振仪 POLIX 生成蟹状脉冲星的脉冲轮廓。我感谢为编写本报告而为其各自研究所和部门开展的空间研究活动提供意见的科学家。我感谢印度空间研究组织总部班加罗尔科学计划办公室代表 INCOSPAR 编撰和编辑本报告的辛勤工作。