*电子邮件:endusharma@gmail.com 摘要 牛粪 (CD) 或牛粪是牛科动物的排泄物,几个世纪以来牛粪传统上被用作印度次大陆农业的有机肥料。牛粪的成分约 80% 是水,还有一些未消化的植物材料,这些材料含有大量有机物质,这是由于牛粪微生物群分泌的抗菌代谢物。牛粪肥料可增强土壤矿物质,还可增强植物对害虫和植物疾病的抵抗力。牛粪 (CD) 微生物群用于农业领域,例如生物防治、促进生长、有机肥料、磷溶解。 CD 已用于其他几种与环境有关的应用,如生物降解、生物修复和重金属生物吸附等。CD 具有丰富的微生物多样性,包含近 60 种细菌(芽孢杆菌属、乳酸杆菌属、棒状杆菌属)、真菌(曲霉菌、木霉菌)、100 种原生动物和酵母菌(酿酒酵母和念珠菌)。在本研究中,我们研究了牛粪的微生物负荷。用营养琼脂、血琼脂和麦康凯琼脂从牛粪中分离细菌。萨氏葡萄糖琼脂 (SDA) 用于真菌分离。根据菌落特征、形态、革兰氏染色、显微镜检查和生化测试对分离的细菌进行鉴定。牛粪的微生物负荷以样品的 cfu/gm 计算。在稀释度 10 -3 时细菌种群数量达到最大,范围为 170×10 -4 cfu/ml。从牛粪中分离出共 20 种分离菌,包括革兰氏阴性杆菌、革兰氏阳性球菌和革兰氏阳性杆菌大肠杆菌、微球菌属和芽孢杆菌属。使用 Sabouraud 葡萄糖琼脂 (SDA) 进行真菌分离。在稀释度 10 -2 时真菌种群数量达到最大,范围为 35×10 -3 cfu/ml,观察到了黑曲霉和烟曲霉的不同真菌菌落。这些有益微生物将用于进一步的研究工作。关键词:牛粪,微生物负荷,细菌,真菌,微生物组。1. 引言在印度,养牛历史悠久,主要与农业有关。许多阿育吠陀配方使用由牛奶、酥油、凝乳、尿液和粪便制成的各种产品(Sharma 和 Singh,2015 年)。牛粪 (CD) 是通过消化系统后未消化的植物材料残留物。其成分包括水(80%)、未消化的残留物(14.4%)和微生物(5.6%),pH 值范围为 7.1 至 7.4(Nene 等人,2003 年;Teo 和 Teoh,2011 年;Radha 和 Rao,2014 年)。由于含有多种具有益生菌活性的微生物,包括植物乳杆菌、干酪乳杆菌、嗜酸乳杆菌、枯草芽孢杆菌、乳酸肠球菌、双歧杆菌和酵母菌(酿酒酵母),牛肠道下部具有益生菌活性Ware等人(1988)。它包括大量天然存在的有益细菌,乳酸杆菌和球菌,以及一些已知和未知的放线菌,真菌和酵母(Muhammad和Amusa,2003; Radha和Rao,2014; Sharma和Singh,2015)。牛粪具有丰富的微生物多样性,包含近60种细菌(芽孢杆菌属、乳酸杆菌属、棒状杆菌属)、真菌(曲霉菌和木霉菌)、100种原生动物和酵母(酿酒酵母和假丝酵母)(Gupta等人,2016年; Bhatt和Maheswari,2019年)。根据 Muhammad 和 Amusa (2003) 的研究,细菌和真菌等土壤污染物经常侵入陈牛粪。生物技术应用(如酶、生物甲烷和生物氢)和环境应用,以及微生物的生物技术多样性、生物动力学制备和牛粪在农业中的用途。自本世纪初以来,生物学家一直对 CD(粪生生物)的微生物多样性感兴趣(McGranaghan 等人,1999 年;Kim 和 Wells,2016 年)。在可持续循环经济的背景下,CD 微生物用于生物技术、环境和农业应用。许多研究已经证明了新鲜牛粪和尿液分别具有抗菌和抗真菌特性,这可能是因为粪便中存在的微生物群会分泌抗菌代谢物(Nene 等人,2003 年;Sharma 和 Singh,2015 年)。几个世纪以来,牛粪一直是印度次大陆农业中用作有机肥料的传统材料。牛粪中还含有多种微生物群,可进一步增强土壤生物地球化学过程(Akinde 和 Obire 2008)。大量研究已经证明了新鲜牛粪和牛尿分别具有抗菌和抗真菌特性,这可能是因为牛粪中的微生物群会分泌抗菌代谢物(Nene 等人,2003 年;Sharma 和 Singh,2015 年)。几个世纪以来,牛粪一直是印度次大陆农业中用作有机肥料的传统材料。牛粪还含有多种微生物群,可进一步增强土壤生物地球化学过程(Akinde 和 Obire,2008 年)。大量研究已经证明了新鲜牛粪和牛尿分别具有抗菌和抗真菌特性,这可能是因为牛粪中的微生物群会分泌抗菌代谢物(Nene 等人,2003 年;Sharma 和 Singh,2015 年)。几个世纪以来,牛粪一直是印度次大陆农业中用作有机肥料的传统材料。牛粪还含有多种微生物群,可进一步增强土壤生物地球化学过程(Akinde 和 Obire,2008 年)。
fi g u r e 2牛奶蛋白过敏(CMPA)金字塔。Children with CMPA have an elevated risk of developing other conditions within the allergic march (i.e., atopic dermatitis, urticaria, asthma, oculorhinitis, eosinophilic esophagitis [EoE]) or outside the allergic march such as celiac disease, inflammatory bowel diseases (IBD), functional gastrointestinal disorders (FGIDs), and神经精神疾病。各种遗传因素在促进这些疾病的发生中起作用,但新兴的数据突出了肠道微生物组营养不良的关键作用,由环境因素引起。Emerging evidence supports the hypothesis that dysbiosis may be the initial trigger for alterations in the intestinal barrier and immune system function leading to CMPA and other allergic disorders later in life and the dysregulation of the brain-gut endocrine-immune system axis (leading to FGIDs, IBD, and neuropsychiatric disorders), partly through the activation of epigenetic mechanisms.
增加的人为活动和自然资源的消费导致化石燃料的下降。要解决不断增长的能源需求,需要一种可持续和环保能源的来源。微生物燃料电池(MFC)代表生物电性产生的最新进步。这项技术利用微生物代谢有机基材释放的电子,将它们从阳极通过外部电路转移到阴极以产生能量。在我们的研究中,我们研究了有机底物牛粪的功效,作为在生物电力产生微生物的情况下的电子供体。在阳极和阴极腔之间采用了盐桥,以促进质子转移。我们的发现表明,以这种方式构建的MFC可以有效地从有机废物中产生电力,从而为正在进行的全球能源危机提供潜在的解决方案。在5天的时间内监测了该基材的实验读数,根据产生的电压评估性能。生成参数的最高记录值为1.31mv。这些双腔室微生物燃料电池是一种未来能源解决方案的有前途的技术。
摘要。沼气是一种富含甲烷的气体,该气体是由废物的微生物消化(农业,污水和土地填充)产生的,可用于发电。厌氧消化酯的沼气生产率低成为牛粪加工的可能性。沼气的产生受到甲烷菌细菌的生物量的影响,在消化酯中含有有机物的转化中,因此需要其他甲烷作菌细菌来加速生物含量产生的速率,即从牛肉量厌氧酯类蒸发酯的甲烷基础上加速甲烷质。细菌分离。这些样品在厌氧腔中在37°C下孵育,分离后,通过几种生化测试鉴定细菌。基于进行的研究,单个甲烷菌细菌的单个菌落是革兰氏阴性细菌,其中分离株的结果表明甲烷杆菌属的细菌。通过添加15%V/V的细菌分离株获得了最高的沼气产生。可以从40 mL产生的沼气体积中看到发酵过程的14天。
进行了本研究以检查新鲜牛尿液的生化和微生物特性。在有组织的耕作系统下,从无菌小瓶中收集了来自有组织的耕作系统下保存的看似健康的土著和杂交牛的98个新鲜尿液样本。使用相应的诊断试剂盒和合适的培养基对尿液样品进行生化,微生物,酵母和霉菌检查。土著奶牛的平均新鲜尿液pH值明显高于杂交母牛。没有观察到土著和杂交母牛之间尿素浓度的差异。在所有新鲜的尿液样品中,平均尿素浓度均为1.56%。干杂交母牛的尿素浓度显着(P <0.01),而在米尔基奶牛中的尿素浓度高,但是,在米尔奇和干燥的土著奶牛中没有观察到差异。米尔基土著奶牛的肌酐浓度明显低于干牛。在对不同样品的微生物检查时,除了四个样品显示BHI和MLA上的细菌菌落外,没有细菌生长。真菌生长的SDA方法表明,研究中没有这种增长。本研究表明,从显而易见的奶牛获得的新鲜牛尿液可用于农业运营中的建议准备。
已经努力比较山羊,牛和人奶之间的营养含量,以研究其作为婴儿配方奶粉的安全性,以及一些研究在其他动物中测试山羊牛奶配方奶粉的研究,这些动物表现出阳性结果。,人类婴儿的试验相对较少。使用山羊牛奶婴儿配方奶粉会导致正常生长。接受山羊基于牛奶的婴儿配方奶粉的婴儿与接受牛奶基牛奶的婴儿配方奶粉的婴儿配方奶粉相当。因此,山羊基于牛奶的婴儿配方的安全性和耐受性似乎与牛奶的基于牛奶的配方没有不同。其他血液营养标记没有差异,并且它们在两个配方组的正常范围内。在6个月后接受山羊牛奶配方奶和牛奶配方奶的婴儿之间的健康状况或事件的风险没有差异。在整个6个月中,两个公式组之间的重量,长度,头圆和BMI没有差异。在那些喂养山羊的牛奶配方中看到的微生物组成分似乎与母乳喂养的婴儿更相似,而那些喂养牛奶的牛奶的配方奶粉。总体而言,山羊的基于牛奶的配方似乎是牛奶基的婴儿配方奶粉的合适替代品。
a 德克萨斯 A & M 大学,动物科学系,德克萨斯州大学城 77843,美国 b 德克萨斯 A & M 农业生命研究中心,德克萨斯州奥弗顿 75684,美国 c 西北密苏里州立大学,农业科学学院,密苏里州玛丽维尔 64468,美国 d 南达科他州立大学,动物科学系,南达科他州布鲁金斯 57007,美国 e 阿肯色州立大学,农业学院,阿肯色州琼斯伯勒 72467,美国 f 田纳西大学,动物科学系,田纳西州诺克斯维尔 37996,美国 g 科尔比社区学院,堪萨斯州科尔比 67701,美国 h 新墨西哥州立大学,动物与牧场科学系,新墨西哥州拉斯克鲁塞斯 88003-8003,美国 i 佐治亚大学,动物与奶制品科学系,佐治亚州雅典 30602,美国 j 堪萨斯州立大学,西北研究与推广中心,美国堪萨斯州科尔比 67701 k 德克萨斯 A & M 大学科默斯分校农业科学与自然资源学院,美国德克萨斯州科默斯 75428 l 密西西比州立大学草原研究中心,美国密西西比州草原 39756
• Can be downloaded for free: https://www.rumen8.com.au/download/index.html • Comes with a default (Australian) and a Tropical Feed Library developed in East Africa • Simulation was done with 4 growth stages of Brachiaria decumbens • Fed to 450 kg crossbred cow, 140 days in milk (no liveweight change)
简介甲烷(CH 4)的温室效应约为二氧化碳(CO 2) * 1的28倍。牛贝尔奇(Cow Belching)是CH 4排放和释放肠道肠道肠道肠道消化系统的重要来源。通过牛的呼气或施加释放的农业释放的农业气体排放量很大一部分,并且通过饲料开发,生活条件的变化和选择性育种来减少这些排放的努力,以减少这些排放。测量奶牛肠肠排放的标准方法是将动物放置在一个特殊设计的室内几天,并测量在此期间发出的总肠道CH 4。尽管此方法提供了极为准确的测量,但设备和人工要求使其不适合测量大量动物的CH 4排放。在2022年,日本国家农业和食品研究组织(NARO)出版了一本手册,描述了一种基于CH 4与CO 2(CH 4 /CO 2)在奶牛呼吸1中测量的CH 4与CO 2(CH 4 /CO 2)的估算方法的方法。此方法对其相对实用性引起了兴趣,因为它不需要大规模,专用的设施,可以用于单一的短期测量并收集来自多个动物的数据。
在两个28天的喂养实验中研究了羊奶和牛奶对大鼠脑脂质组成的影响。使用乙醇 - 己烷提取大鼠脑的总脂质,并使用带有火焰电离检测的气相色谱法(GC-FID)和磷酸磷酸化的脂肪酸和磷脂含量(磷脂)和磷-31核磁共振(31 P NMR)。此外,使用衰减的总反射率傅立叶变换红外和傅立叶变换拉曼规格Troscopicy分析了冷冻干燥的合并样品,并使用多变量方法进行了分析。与研究1中的羊奶处理的组相比,在牛奶组中发现了C18:2更高的C18:2含量。在研究第二,与对照低Ca/p组相比,绵羊牛奶处理的组中的C16:0含量显着(P <0.05)。在光谱分析中没有观察到显着(p> 0.05)。可以得出结论,喂给大鼠28天的绵羊和牛奶对脑脂肪组的影响很低。
