Old 7 , 8 , Nicolaus Kr € 9 , Mohamad Mohty 10 , Amage 11 , Skinicro Okamoto 12 , Naeem Chaudhri , Celsy Cornwall 17 , Alaa Elhaddad 18 , Lisa M. Force 19 , Christ Fruos 20 , Ben Jacobs 26 , Hee-Je 27 , Minana 28 , Leslie Lehmann 29 , Regis 33 , 34 , 35 ,安德森·约〜到西蒙妮36,木材40,Isdinal 42、42、13,Dieter Ieder 46、47、48
Ted Abel 博士 Anissa Abi-Dargham 医学博士 Nii A. Addy 博士 Susanne E. Ahmari 医学博士、博士 Schahram Akbarian 医学博士、博士 Susan G. Amara 博士 Stewart A. Anderson 医学博士 Nancy C. Andreasen 医学博士、博士 Victoria Arango 博士 Amy FT Arnsten 博士 Gary S. Aston-Jones 博士 Randy P. Auerbach 博士 Jay M. Baraban 医学博士、博士 Deanna M. Barch 博士 Jack D. Barchas 医学博士 Samuel H. Barondes 医学博士 Carrie E. Bearden 博士 Francine M. Benes 医学博士、博士 Karen F. Berman 医学博士 Wade H. Berrettini 医学博士、博士Randy D. Blakely,博士 Pierre Blier,医学博士,博士 Hilary P. Blumberg,医学博士 Vadim Bolshakov,博士 Antonello Bonci,医学博士 Kathleen T. Brady,医学博士,博士 Kristen J. Brennand,博士 Robert W. Buchanan,医学博士 Peter F. Buckley,医学博士 Edward T. Bullmore,博士 William E. Bunney,Jr.,医学博士 Joseph D. Buxbaum,博士 William Byerley,医学博士 Tyrone D. Cannon,博士 William Carlezon,博士 William T. Carpenter,Jr.,医学博士 Cameron S. Carter,医学博士 Peter Jeffrey Conn,博士 Edwin H. Cook,Jr.,医学博士 Richard Coppola,理学博士 Christopher W. Cowan,博士约瑟夫·T·科伊尔 (Joseph T. Coyle),医学博士 杰奎琳·克劳利 (Jacqueline N. Crawley),博士
杰出飞行诺奖章。托马斯·赫伯特中士 BAKF.II—No.107.约翰·威尔逊·伊托宾森中士 BAXTER JNO 83- 托马斯·贝蒂中士—No.83.乔治·弗雷德里克·贝茨中士——不。9.威廉·布朗中士——不。144.约翰·亚历克·布尔克雷格 (John Alec BULCRAIG) 中士——No。50.W. T. CHRISTIE 中士,R.A.F.Y.R.—No.58.艾伦·詹姆斯中士 COAD——NO.50..乔治·爱德华·考恩中士——不。61.克里斯托弗·道森中士——不。9.道格拉斯·基思·戴尔 (Douglas Keith DEYELL) 中士——No。38.道格拉斯·雷蒙德·道蒂中士——Nn.82.诺曼·赫恩-菲利中士 (Norman HEARN-PHILI.IPS)——No。22.中士 A. J. HERRIOTT,R.A.F.V.R.,No.99.哈罗德·罗伯特·伊特中士BBS—No.107.菲利普·赫德森中士——不。144.Frederick D. KING 中士,R.A.*\V.R.-NO.53,詹姆斯·约翰·威廉·刘易斯中士——No.44.•雷金纳德·洛奇中士——44号。沃尔特·缪尔·麦克格雷戈中士——No.144.伯纳德·阿瑟·马丁中士——NO。201.埃里克·尼尔中士,R.A.F.V.R.^NO。59.亚瑟·约瑟夫·尼尔中士——不。144.埃文·鲍威尔中士 - No.49.菲利普·普赖斯 (Philip Price) 下士 AIex?nder——No.83.托马斯·PUBDY 中士——NO。9.罗伯特·约瑟夫·雷诺兹中士——不。49.亚瑟·戈登·索普威斯中士——不。110.R. J. WERKAN 中士,R.A.F.V.R.-NO.115.Cilrnyn G. L. WILLIAMS 中士——No。217.领先飞行员卢埃林 A. C. 约翰。
1 澳大利亚墨尔本莫纳什大学和莫纳什健康学院肿瘤学系 2 澳大利亚奥尔伯里-沃东加边境医学肿瘤学系和澳大利亚奥尔伯里新南威尔士大学乡村临床学院肿瘤学系 3 比利时埃德海姆安特卫普大学医院肿瘤学系 4 澳大利亚阿德莱德弗林德斯医学中心和弗林德斯大学肿瘤学系 5 新西兰达尼丁奥塔哥大学医学系 6 澳大利亚霍巴特皇家霍巴特医院肿瘤学系。 7 澳大利亚珀斯伊迪斯科文大学圣约翰上帝苏比亚科医院和医学与健康科学学院肿瘤科 8 澳大利亚悉尼大学皇家北岸医院肿瘤内科 9 澳大利亚汤斯维尔汤斯维尔医院和卫生服务中心汤斯维尔癌症中心肿瘤内科 10 澳大利亚墨尔本莫纳什卫生中心癌症服务临床运营总监 11 澳大利亚墨尔本圣文森特卫生中心包容性健康研究经理 12 澳大利亚维多利亚州海德堡奥斯汀卫生中心奥莉维亚纽顿约翰癌症研究所 13 澳大利亚维多利亚州海德堡拉筹伯大学癌症医学院; 14 墨尔本大学医学系,海德堡,维多利亚州,澳大利亚 15 澳大利亚堪培拉国立大学堪培拉医院和澳大利亚国立大学医学院肿瘤内科系,堪培拉,澳大利亚 16 皇家达尔文医院医学系,达尔文,北领地,澳大利亚 17 悉尼大学悉尼医学院尼皮恩医院和尼皮恩临床学院肿瘤内科系,悉尼,澳大利亚 18 新南威尔士大学柯比研究所生物安全项目,悉尼,澳大利亚
该计划旨在支持因弗克莱德 HSCP 成人服务中心及其承诺,通过促进健康和福祉,让人们能够在繁荣的社区中生活更长久、更幸福。设计工作于 2024 年 1 月由确定的高级领导和项目团队开始。HSCP 承诺提供 50,000 英镑,用于开发和测试最多六个想法,这些想法将根据商定的投资标准展示影响:• 让人们能够独立生活并做出自己的选择。• 促进支持性、包容性的社区。• 建立协作和综合的工作。• 倾听、回应和扩大人民和社区的声音。• 展示创造力、附加值和创新• 具有扩大和复制的潜力。• 了解成本并解决风险。在为期八周的沉浸式旅程中,该计划旨在:• 更广泛地了解利用因弗克莱德成人服务的人们和社区的需求。• 将想法发展成可供投资的提案。• 培养员工——他们的信心和创新技能。• 使员工能够将业务开发技能融入到他们的角色中。 • 展示可复制的创意。生活经验和社区的声音是整个过程的核心。该计划于 6 月 13 日在 Beacon 艺术中心举行的一场小型投资活动中达到高潮。每个团队都向投资小组(首席官员 Kate Rocks、议员 Robert Moran IJB 主席和 IJB 副主席 Alan Cowan 以及服务经理 Debbie Maloney)介绍了他们的想法,希望获得 50,000 英镑投资基金的资金支持和/或组织支持来测试和实施他们的想法。所有五个团队都阐明了他们的想法的价值,这些想法植根于声音,并强调了改善生活和使人们能够独立生活的潜在影响。这些团队给小组留下了深刻的印象,小组支持所有想法,并进行了超过 50,000 英镑的初始基金的投资。每个小组都取得了以下进展:
运用数学游戏应用进行数字化游戏化学习对四年级学生计算能力的影响 刘濝濢 -Bei LIU a* , Alex Wing Cheung TSE b* 香港大学教育学院,香港 a* u3598295@connect.hku.hk; b* awctse@hku.hk 摘要:计算能力是小学数学学习中必不可少的素质,事实证明,通过游戏化应用进行学习可以提高学生的数学学习成绩,从而有利于发展他们的计算能力。计算能力是数学核心技能之一,可以通过不断的计算练习来提高。然而,目前关于在小学使用运用数学游戏应用进行数字化游戏化学习 (DGBL) 对发展学生计算能力的影响的研究还很少。因此,本项准实验研究共有78名学生参与,旨在评估通过iPad进行DGBL与数学游戏应用“口算英雄”对中国大陆一所主流学校四年级学生计算能力的可能影响。实验班将数学游戏应用融入为期四周的课堂活动中,实验组和对照组均采用标准化计算能力测试:Abilita diCalcoloz计算能力-记忆与训练第6-11组(Cornoldi等,2002)进行前测和后测。采用方差分析的数据分析结果显示,在数学课堂上使用iPad上的数学游戏应用学习时,学生的计算能力存在显著差异,四年级实验组(n=40)与对照组(n=38)的整体计算能力存在显著差异。换句话说,我们发现,在使用数学游戏应用进行计算练习后,学生更有可能获得更好的计算能力,尤其体现在计算速度更快、错误率更低方面。然而,在数值知识方面没有显著差异,使用这种数学游戏应用程序学习可能不会导致获得更多的数学知识。这项研究为小学数学教育者和教师提供了一个现实的视角来了解使用数学游戏应用程序学习的潜力:它可以成为提高四年级学生计算能力的有效工具。该项目的第二阶段是探索研究结果背后的原因,揭示使用数学游戏应用程序进行 DGBL 的可能因素,这些因素可能会促进计算能力的某些方面。提出了将 DGBL 融入小学数学课堂的进一步建议。关键词:基于数字游戏的学习、计算能力、数学游戏 1。引言:学生的计算能力是指理解数字之间规律和相对量,并以更灵活的方式进行数字运算(加、减、乘、除)的能力(Feigenson 等,2004;Tall 和 Dehaene,1998)。计算能力对于小学阶段的数学成绩至关重要(Cowan 等,2011)。与不同领先国家的小学数学课程类似,根据中国大陆最新的课程标准,四年级学生必须掌握四种运算(加、减、乘、除),并且需要不断练习计算能力以找到更简单的解决方案(中华人民共和国教育部,2022)。学生的表现和
[1] Michael Ahn,Anthony Brohan,Noah Brown等。2022。尽我所能,而不是我所说:机器人负担中的基础语言。Arxiv:2204.01691 [2] Christoph Bartneck,Elizabeth Croft和Dana Kulic。2009。拟人化,动画,可爱性,感知的智力和感知机器人安全性的测量工具。国际社会机器人学杂志1,1(2009),71-81。https://doi.org/10.1007/s12369-008-0001-3 [3] Deborah R. Billings,Kristin E. Schaefer,Jessie Y.C. Chen和Peter A. Hancock。 2012。 人类机器人互动:建立对机器人的信任。 in proc。 HRI。 ACM,109–110。 https://doi.org/10.1145/2157689.2157709 [4] Anthony Brohan,Noah Brown,Justice Carbajal,Yevgen Chebotar和evgen Chebotar和等。 2023。 RT-2:视觉语言行动模型将Web知识传递到机器人控制。 https://doi.org/10.48550/arxiv.2307.15818 arxiv:2307.15818 [CS] [5] John Brooke。 1995。 sus:快速而肮脏的可用性量表。 可用性评估。 ind。 189(1995)。 [6] L. Clark,N。Pantidi,O。Cooney,P。Doyle,D。Garaiallde,J。Edwards,B。Spillane,C。Murad,C。Munteanu,V。Wade和B. R. Cowan。 2019。 是什么使良好的交谈? 在设计真正的对话代理方面面临挑战。 in proc。 chi。 1–12。 https://doi.org/10.1145/3290605.3300705 [7] D. A. Dhinagaran,L。Martinengo,M。R. Ho,S。Joty,T。Kowatsch,R。Atun和L. T. Car。 2022。 2023。https://doi.org/10.1007/s12369-008-0001-3 [3] Deborah R. Billings,Kristin E. Schaefer,Jessie Y.C.Chen和Peter A. Hancock。2012。人类机器人互动:建立对机器人的信任。in proc。HRI。 ACM,109–110。 https://doi.org/10.1145/2157689.2157709 [4] Anthony Brohan,Noah Brown,Justice Carbajal,Yevgen Chebotar和evgen Chebotar和等。 2023。 RT-2:视觉语言行动模型将Web知识传递到机器人控制。 https://doi.org/10.48550/arxiv.2307.15818 arxiv:2307.15818 [CS] [5] John Brooke。 1995。 sus:快速而肮脏的可用性量表。 可用性评估。 ind。 189(1995)。 [6] L. Clark,N。Pantidi,O。Cooney,P。Doyle,D。Garaiallde,J。Edwards,B。Spillane,C。Murad,C。Munteanu,V。Wade和B. R. Cowan。 2019。 是什么使良好的交谈? 在设计真正的对话代理方面面临挑战。 in proc。 chi。 1–12。 https://doi.org/10.1145/3290605.3300705 [7] D. A. Dhinagaran,L。Martinengo,M。R. Ho,S。Joty,T。Kowatsch,R。Atun和L. T. Car。 2022。 2023。HRI。ACM,109–110。 https://doi.org/10.1145/2157689.2157709 [4] Anthony Brohan,Noah Brown,Justice Carbajal,Yevgen Chebotar和evgen Chebotar和等。 2023。 RT-2:视觉语言行动模型将Web知识传递到机器人控制。 https://doi.org/10.48550/arxiv.2307.15818 arxiv:2307.15818 [CS] [5] John Brooke。 1995。 sus:快速而肮脏的可用性量表。 可用性评估。 ind。 189(1995)。 [6] L. Clark,N。Pantidi,O。Cooney,P。Doyle,D。Garaiallde,J。Edwards,B。Spillane,C。Murad,C。Munteanu,V。Wade和B. R. Cowan。 2019。 是什么使良好的交谈? 在设计真正的对话代理方面面临挑战。 in proc。 chi。 1–12。 https://doi.org/10.1145/3290605.3300705 [7] D. A. Dhinagaran,L。Martinengo,M。R. Ho,S。Joty,T。Kowatsch,R。Atun和L. T. Car。 2022。 2023。ACM,109–110。https://doi.org/10.1145/2157689.2157709 [4] Anthony Brohan,Noah Brown,Justice Carbajal,Yevgen Chebotar和evgen Chebotar和等。2023。RT-2:视觉语言行动模型将Web知识传递到机器人控制。 https://doi.org/10.48550/arxiv.2307.15818 arxiv:2307.15818 [CS] [5] John Brooke。 1995。 sus:快速而肮脏的可用性量表。 可用性评估。 ind。 189(1995)。 [6] L. Clark,N。Pantidi,O。Cooney,P。Doyle,D。Garaiallde,J。Edwards,B。Spillane,C。Murad,C。Munteanu,V。Wade和B. R. Cowan。 2019。 是什么使良好的交谈? 在设计真正的对话代理方面面临挑战。 in proc。 chi。 1–12。 https://doi.org/10.1145/3290605.3300705 [7] D. A. Dhinagaran,L。Martinengo,M。R. Ho,S。Joty,T。Kowatsch,R。Atun和L. T. Car。 2022。 2023。RT-2:视觉语言行动模型将Web知识传递到机器人控制。https://doi.org/10.48550/arxiv.2307.15818 arxiv:2307.15818 [CS] [5] John Brooke。 1995。 sus:快速而肮脏的可用性量表。 可用性评估。 ind。 189(1995)。 [6] L. Clark,N。Pantidi,O。Cooney,P。Doyle,D。Garaiallde,J。Edwards,B。Spillane,C。Murad,C。Munteanu,V。Wade和B. R. Cowan。 2019。 是什么使良好的交谈? 在设计真正的对话代理方面面临挑战。 in proc。 chi。 1–12。 https://doi.org/10.1145/3290605.3300705 [7] D. A. Dhinagaran,L。Martinengo,M。R. Ho,S。Joty,T。Kowatsch,R。Atun和L. T. Car。 2022。 2023。https://doi.org/10.48550/arxiv.2307.15818 arxiv:2307.15818 [CS] [5] John Brooke。1995。sus:快速而肮脏的可用性量表。可用性评估。ind。189(1995)。 [6] L. Clark,N。Pantidi,O。Cooney,P。Doyle,D。Garaiallde,J。Edwards,B。Spillane,C。Murad,C。Munteanu,V。Wade和B. R. Cowan。 2019。 是什么使良好的交谈? 在设计真正的对话代理方面面临挑战。 in proc。 chi。 1–12。 https://doi.org/10.1145/3290605.3300705 [7] D. A. Dhinagaran,L。Martinengo,M。R. Ho,S。Joty,T。Kowatsch,R。Atun和L. T. Car。 2022。 2023。189(1995)。[6] L. Clark,N。Pantidi,O。Cooney,P。Doyle,D。Garaiallde,J。Edwards,B。Spillane,C。Murad,C。Munteanu,V。Wade和B. R. Cowan。2019。是什么使良好的交谈?在设计真正的对话代理方面面临挑战。in proc。chi。1–12。https://doi.org/10.1145/3290605.3300705 [7] D. A. Dhinagaran,L。Martinengo,M。R. Ho,S。Joty,T。Kowatsch,R。Atun和L. T. Car。2022。2023。设计,开发,评估和实施一个基于规则的对话代理(Discover):开发概念框架。MHealth和UHealth(2022)。[8] Satyam Dwivedi,Sanjukta Ghosh和Shivam Dwivedi。使用及时的工程和内在的学习来打破偏见:LLMS中的性别公平。Rupkatha人文跨学科研究期刊15,4(2023)。https://doi.org/10.21659/rupkatha.v15n4.10 [9] Gabriel Haas,Michael Rietzler,Matt Jones和Enrico Rukzio。2022。保持简短:语音助手的响应行为的比较。在2022 CHI人为因素会议论文集(CHI '22)中。计算机协会,美国纽约,美国,第321条,第12页。https://doi.org/10.1145/3491102.3517684 [10] Guy Hoffman和Wendy Ju。2014。设计机器人时要牢记运动。人类机器人相互作用杂志3,1(2014),91-122。[11] Trung Dong Huynh,William Seymour,Luc Moreau和Jose这样。2023。为什么会话助手仍然是黑匣子?透明度的情况。in proc。cui。ACM,1-5。 https://doi.org/10.1145/3571884.3604319 [12] Frank Joublin, Antonello Ceravola, Pavel Smirnov, Felix Ocker, Joerg Deigmoeller, Anna Belardinelli, Chao Wang, Stephan Hasler, Daniel Tanneberg, and Michael Gienger. 2023。 COPAL:具有大语言模型的机器人动作的纠正措施。 ARXIV预印型ARXIV:2310.07263(2023)。 2017。 2023。ACM,1-5。https://doi.org/10.1145/3571884.3604319 [12] Frank Joublin, Antonello Ceravola, Pavel Smirnov, Felix Ocker, Joerg Deigmoeller, Anna Belardinelli, Chao Wang, Stephan Hasler, Daniel Tanneberg, and Michael Gienger.2023。COPAL:具有大语言模型的机器人动作的纠正措施。ARXIV预印型ARXIV:2310.07263(2023)。2017。2023。[13] Kornelia Lazanyi和Beata Hajdu。信任人类机器人互动。在2017年IEEE第14届国际信息学科学会议。IEEE,216–220。 https://doi.org/10.1109/informatics.2017.8327249 [14] Jan Leusmann,Carl Oechsner,Johanna Prinz,Robin Welsch和Sven Mayer。 厨房对象的数据库:在人类机器人相互作用的背景下调查危险感知。 在Chi的扩展摘要中。 ACM,第6,9页。 https://doi.org/10.1145/3544549.3585884 [15] Jan Leusmann,Chao Wang,Michael Gienger,Albrecht Schmidt和Sven Mayer。 2023。 了解人类机器人相互作用的不确定性循环。 https://doi.org/10.48550/arxiv.2303.07889 arxiv:2303.07889 [CS.HC] [16] Jan Leusmann,Jannik Wiese,Jannik Wiese,Moritz Ziarko和Sven Mayer。 2023。 调查活跃智能助手的机会,以启动与用户互动的机会。 in proc。 妈妈。 ACM,495–498。 https://doi.org/10.1145/3626705.3631787 [17] Zeng,Zhengxiao du,Chenhui Zhang,Sheng Shen,Tianjun Zhang,Yu Su,Huan Sun,Minlie Huang,Yuxiao Dong和Jie Tang。 2023。 代理商:评估LLM作为代理。 arxiv:2308.03688 [CS.AI] [18] Amama Mahmood,Junxiang Wang,Bingsheng Yao,Dakuo Wang和Chien-Ming Huang。 2023。 LLM驱动的对话语音助手:交互模式,机会,挑战和设计指南。 2022。IEEE,216–220。https://doi.org/10.1109/informatics.2017.8327249 [14] Jan Leusmann,Carl Oechsner,Johanna Prinz,Robin Welsch和Sven Mayer。厨房对象的数据库:在人类机器人相互作用的背景下调查危险感知。在Chi的扩展摘要中。ACM,第6,9页。https://doi.org/10.1145/3544549.3585884 [15] Jan Leusmann,Chao Wang,Michael Gienger,Albrecht Schmidt和Sven Mayer。2023。了解人类机器人相互作用的不确定性循环。https://doi.org/10.48550/arxiv.2303.07889 arxiv:2303.07889 [CS.HC] [16] Jan Leusmann,Jannik Wiese,Jannik Wiese,Moritz Ziarko和Sven Mayer。2023。调查活跃智能助手的机会,以启动与用户互动的机会。in proc。妈妈。ACM,495–498。 https://doi.org/10.1145/3626705.3631787 [17] Zeng,Zhengxiao du,Chenhui Zhang,Sheng Shen,Tianjun Zhang,Yu Su,Huan Sun,Minlie Huang,Yuxiao Dong和Jie Tang。 2023。 代理商:评估LLM作为代理。 arxiv:2308.03688 [CS.AI] [18] Amama Mahmood,Junxiang Wang,Bingsheng Yao,Dakuo Wang和Chien-Ming Huang。 2023。 LLM驱动的对话语音助手:交互模式,机会,挑战和设计指南。 2022。ACM,495–498。https://doi.org/10.1145/3626705.3631787 [17] Zeng,Zhengxiao du,Chenhui Zhang,Sheng Shen,Tianjun Zhang,Yu Su,Huan Sun,Minlie Huang,Yuxiao Dong和Jie Tang。2023。代理商:评估LLM作为代理。arxiv:2308.03688 [CS.AI] [18] Amama Mahmood,Junxiang Wang,Bingsheng Yao,Dakuo Wang和Chien-Ming Huang。2023。LLM驱动的对话语音助手:交互模式,机会,挑战和设计指南。2022。arxiv:2309.13879 [CS] http://arxiv.org/abs/2309.13879 [19] Marco Manca,Parvaneh Parvin,FabioPaternò和Carmen Santoro。[n。 d。]。将Alexa集成到基于规则的个性化平台中。in proc。。ACM,108–113。 https://doi.org/10.1145/3411170.3411228 [20] Emily Mower,David J. Feil-Seifer,Maja J. Mataric和Shrikanth Narayanan。 [n。 d。]。 使用生理测量来研究人类机器人相互作用中用户状态估计的隐式提示。 Ro-Man。 IEEE,1125–1130。 https://doi.org/10.1109/roman.2007.4415249 [21] Carl Oechsner,Sven Mayer和Andreas Butz。 合作机器人作为烹饪设备的挑战和机遇。 in proc。 2022年与自动化互动的研讨会(AutomationXP22)。 https://sven-mayer.com/wp-content/uploads/2022/05/oechsner20222challenges.pdf [22] Matthew K.x.j. pan,Elizabeth A. Croft和GünterNiemeyer。 2018。 使用机器人社会属性量表(Rosas)评估对人向机器人移交的社会感知。 in proc。 HRI。 ACM,443–451。 https://doi.org/10.1145/3171221.3171257 [23] Tracy Sanders,Alexandra Kaplan,Ryan Koch,Michael Schwartz和P. A. Hancock。 2019。 信任与使用人物互动中的选择之间的关系。 人为因素61,4(2019),614–626。 2014。 方式和透明度对人类机器人相互作用的信任的影响。ACM,108–113。https://doi.org/10.1145/3411170.3411228 [20] Emily Mower,David J. Feil-Seifer,Maja J. Mataric和Shrikanth Narayanan。[n。 d。]。使用生理测量来研究人类机器人相互作用中用户状态估计的隐式提示。Ro-Man。 IEEE,1125–1130。 https://doi.org/10.1109/roman.2007.4415249 [21] Carl Oechsner,Sven Mayer和Andreas Butz。 合作机器人作为烹饪设备的挑战和机遇。 in proc。 2022年与自动化互动的研讨会(AutomationXP22)。 https://sven-mayer.com/wp-content/uploads/2022/05/oechsner20222challenges.pdf [22] Matthew K.x.j. pan,Elizabeth A. Croft和GünterNiemeyer。 2018。 使用机器人社会属性量表(Rosas)评估对人向机器人移交的社会感知。 in proc。 HRI。 ACM,443–451。 https://doi.org/10.1145/3171221.3171257 [23] Tracy Sanders,Alexandra Kaplan,Ryan Koch,Michael Schwartz和P. A. Hancock。 2019。 信任与使用人物互动中的选择之间的关系。 人为因素61,4(2019),614–626。 2014。 方式和透明度对人类机器人相互作用的信任的影响。Ro-Man。IEEE,1125–1130。 https://doi.org/10.1109/roman.2007.4415249 [21] Carl Oechsner,Sven Mayer和Andreas Butz。 合作机器人作为烹饪设备的挑战和机遇。 in proc。 2022年与自动化互动的研讨会(AutomationXP22)。 https://sven-mayer.com/wp-content/uploads/2022/05/oechsner20222challenges.pdf [22] Matthew K.x.j. pan,Elizabeth A. Croft和GünterNiemeyer。 2018。 使用机器人社会属性量表(Rosas)评估对人向机器人移交的社会感知。 in proc。 HRI。 ACM,443–451。 https://doi.org/10.1145/3171221.3171257 [23] Tracy Sanders,Alexandra Kaplan,Ryan Koch,Michael Schwartz和P. A. Hancock。 2019。 信任与使用人物互动中的选择之间的关系。 人为因素61,4(2019),614–626。 2014。 方式和透明度对人类机器人相互作用的信任的影响。IEEE,1125–1130。https://doi.org/10.1109/roman.2007.4415249 [21] Carl Oechsner,Sven Mayer和Andreas Butz。 合作机器人作为烹饪设备的挑战和机遇。 in proc。 2022年与自动化互动的研讨会(AutomationXP22)。 https://sven-mayer.com/wp-content/uploads/2022/05/oechsner20222challenges.pdf [22] Matthew K.x.j. pan,Elizabeth A. Croft和GünterNiemeyer。 2018。 使用机器人社会属性量表(Rosas)评估对人向机器人移交的社会感知。 in proc。 HRI。 ACM,443–451。 https://doi.org/10.1145/3171221.3171257 [23] Tracy Sanders,Alexandra Kaplan,Ryan Koch,Michael Schwartz和P. A. Hancock。 2019。 信任与使用人物互动中的选择之间的关系。 人为因素61,4(2019),614–626。 2014。 方式和透明度对人类机器人相互作用的信任的影响。https://doi.org/10.1109/roman.2007.4415249 [21] Carl Oechsner,Sven Mayer和Andreas Butz。合作机器人作为烹饪设备的挑战和机遇。in proc。2022年与自动化互动的研讨会(AutomationXP22)。https://sven-mayer.com/wp-content/uploads/2022/05/oechsner20222challenges.pdf [22] Matthew K.x.j. pan,Elizabeth A. Croft和GünterNiemeyer。 2018。 使用机器人社会属性量表(Rosas)评估对人向机器人移交的社会感知。 in proc。 HRI。 ACM,443–451。 https://doi.org/10.1145/3171221.3171257 [23] Tracy Sanders,Alexandra Kaplan,Ryan Koch,Michael Schwartz和P. A. Hancock。 2019。 信任与使用人物互动中的选择之间的关系。 人为因素61,4(2019),614–626。 2014。 方式和透明度对人类机器人相互作用的信任的影响。https://sven-mayer.com/wp-content/uploads/2022/05/oechsner20222challenges.pdf [22] Matthew K.x.j.pan,Elizabeth A. Croft和GünterNiemeyer。2018。使用机器人社会属性量表(Rosas)评估对人向机器人移交的社会感知。in proc。HRI。 ACM,443–451。 https://doi.org/10.1145/3171221.3171257 [23] Tracy Sanders,Alexandra Kaplan,Ryan Koch,Michael Schwartz和P. A. Hancock。 2019。 信任与使用人物互动中的选择之间的关系。 人为因素61,4(2019),614–626。 2014。 方式和透明度对人类机器人相互作用的信任的影响。HRI。ACM,443–451。 https://doi.org/10.1145/3171221.3171257 [23] Tracy Sanders,Alexandra Kaplan,Ryan Koch,Michael Schwartz和P. A. Hancock。 2019。 信任与使用人物互动中的选择之间的关系。 人为因素61,4(2019),614–626。 2014。 方式和透明度对人类机器人相互作用的信任的影响。ACM,443–451。https://doi.org/10.1145/3171221.3171257 [23] Tracy Sanders,Alexandra Kaplan,Ryan Koch,Michael Schwartz和P. A. Hancock。2019。信任与使用人物互动中的选择之间的关系。人为因素61,4(2019),614–626。2014。方式和透明度对人类机器人相互作用的信任的影响。https://doi.org/10.1177/00187208818816838 [24] Tracy L. Sanders,Tarita Wixon,K。Elizabeth Schafer,Jessie Y. C. C. C. Chen和P. A. Hancock。在cogsima中IEE,156–1 https://doi.org/10.1109/cogsima.2014.6816556 [25] Christian E. Schaefer。 [n。 D.] 在人类机器人互动中建立信任:“信任感知量表 - hri”的发展。 在强大的智能和对自治系统的信任中 https://doi.org/10.1007/978-1-4899-7668-0_10 [26] Kotaro Shukri,Ryyoma Ishigaki,Jundai Suzuki,Jundai Suzuki,Tsubasa,Tsubasa,Tsubasa,Takakubo,Kawakubo,Maski Shuzo,Maaski Shuzo,Maedaa。 2023。 使用大语言模型的对话系统的元控制。 (2023)。 https://doi.org/10.4850/arxiv.2312.2312.13715 [27] Jagdish Singh,Minnu Helen Joesph和Khurshid Begum Abdul Abdul Jabbar。 2019。 基于规则的Chabot供学生查询。 物理学杂志:会议系列1228,1(2019),012060。https://doi.org/10.10.1088/1742-6596/1228/1IEE,156–1https://doi.org/10.1109/cogsima.2014.6816556 [25] Christian E. Schaefer。 [n。 D.] 在人类机器人互动中建立信任:“信任感知量表 - hri”的发展。 在强大的智能和对自治系统的信任中 https://doi.org/10.1007/978-1-4899-7668-0_10 [26] Kotaro Shukri,Ryyoma Ishigaki,Jundai Suzuki,Jundai Suzuki,Tsubasa,Tsubasa,Tsubasa,Takakubo,Kawakubo,Maski Shuzo,Maaski Shuzo,Maedaa。 2023。 使用大语言模型的对话系统的元控制。 (2023)。 https://doi.org/10.4850/arxiv.2312.2312.13715 [27] Jagdish Singh,Minnu Helen Joesph和Khurshid Begum Abdul Abdul Jabbar。 2019。 基于规则的Chabot供学生查询。 物理学杂志:会议系列1228,1(2019),012060。https://doi.org/10.10.1088/1742-6596/1228/1https://doi.org/10.1109/cogsima.2014.6816556 [25] Christian E. Schaefer。[n。 D.]在人类机器人互动中建立信任:“信任感知量表 - hri”的发展。在强大的智能和对自治系统的信任中https://doi.org/10.1007/978-1-4899-7668-0_10 [26] Kotaro Shukri,Ryyoma Ishigaki,Jundai Suzuki,Jundai Suzuki,Tsubasa,Tsubasa,Tsubasa,Takakubo,Kawakubo,Maski Shuzo,Maaski Shuzo,Maedaa。 2023。 使用大语言模型的对话系统的元控制。 (2023)。 https://doi.org/10.4850/arxiv.2312.2312.13715 [27] Jagdish Singh,Minnu Helen Joesph和Khurshid Begum Abdul Abdul Jabbar。 2019。 基于规则的Chabot供学生查询。 物理学杂志:会议系列1228,1(2019),012060。https://doi.org/10.10.1088/1742-6596/1228/1https://doi.org/10.1007/978-1-4899-7668-0_10 [26] Kotaro Shukri,Ryyoma Ishigaki,Jundai Suzuki,Jundai Suzuki,Tsubasa,Tsubasa,Tsubasa,Takakubo,Kawakubo,Maski Shuzo,Maaski Shuzo,Maedaa。 2023。 使用大语言模型的对话系统的元控制。 (2023)。 https://doi.org/10.4850/arxiv.2312.2312.13715 [27] Jagdish Singh,Minnu Helen Joesph和Khurshid Begum Abdul Abdul Jabbar。 2019。 基于规则的Chabot供学生查询。 物理学杂志:会议系列1228,1(2019),012060。https://doi.org/10.10.1088/1742-6596/1228/1https://doi.org/10.1007/978-1-4899-7668-0_10 [26] Kotaro Shukri,Ryyoma Ishigaki,Jundai Suzuki,Jundai Suzuki,Tsubasa,Tsubasa,Tsubasa,Takakubo,Kawakubo,Maski Shuzo,Maaski Shuzo,Maedaa。2023。使用大语言模型的对话系统的元控制。(2023)。https://doi.org/10.4850/arxiv.2312.2312.13715 [27] Jagdish Singh,Minnu Helen Joesph和Khurshid Begum Abdul Abdul Jabbar。2019。基于规则的Chabot供学生查询。物理学杂志:会议系列1228,1(2019),012060。https://doi.org/10.10.1088/1742-6596/1228/1
2。Pereira MR,Mohan S,Cohen DJ等。covid-19中的固体器官传输者:美国震中的初步报告。Am J移植。2020; 20(7):1800-1808。3。Polack FP,Thomas SJ,Kitchin N等。BNT162B2 mRNA COVID-19疫苗的安全性和功效。n Engl J Med。2020; 383(27):2603-2615。4。Baden LR,El Sahly HM,Essink B等。mRNA-1273 SARS-COV-2疫苗的功效和安全性。n Engl J Med。2021; 384(5):403-416。5。Sadoff J,Gray G,Vandebosch A等。Single剂量AD26.COV2.S疫苗的安全性和疗效对COVID-19。n Engl J Med。2021; 384(23):2187-2201。6。Rabinowich L,Grupper A,Baruch R等。对肝移植受者的SARS-COV-2疫苗接种的免疫原性低。J hepatol。2021; 75(2):435-438。7。Grupper A,Rabinowich L,Schwartz D等。在没有事先暴露于病毒的情况下,肾脏跨植物受体中对mRNA SARS-COV-2 BNT162B2疫苗的体液反应降低。Am J移植。2021; 21(8):2719-2726。8。Boyarksy BJ,Werbel WA,Avery RK等。对固体器官移植受者中对2剂SARS-COV-2 mRNA疫苗系列的抗体反应。JAMA。 2021; 325(21):2204-2206。 9。 Dengler TJ,Strnad N,Buhring I等。 移植。 1998; 66(10):1340-1347。 10。 Am J移植。 11。JAMA。2021; 325(21):2204-2206。9。Dengler TJ,Strnad N,Buhring I等。移植。1998; 66(10):1340-1347。 10。 Am J移植。 11。1998; 66(10):1340-1347。10。Am J移植。11。心脏移植后免疫抑制的患者对流感和肺炎球菌疫苗接种的免疫反应差异。Kumar D,Welsh B,Siegal D,Chen MH,HumarA。肺炎球菌疫苗肾移植受者的免疫原性 - 随机试验的三年随访。2007; 7(3):633-638。 Cowan M,Chon WJ,Desai A等。 免疫抑制对稳定的肾脏跨植物受体中流感疫苗接种的免疫反应的影响。 移植。 2014; 97(8):846-853。 12。 Loinaz C,De Juanes JR,Gonzalez EM等。 乙型肝炎疫苗导致140例肝移植受者。 肝胃肠病学。 1997; 44(13):235-238。 13。 anjans,natoriy,fernandezbetancesaa,etal。在佛罗里达州迈阿密的固体器官移植物中mRNA疫苗接种后的BreakThroughCovid- 19感染。 移植。 2021; 105(10):E139-E141。 14。 Chenxi Song C,Christensen J,Kumar D,Vissichelli N,Morales M,Gupta G. Sars-Cov-2 mRNA疫苗疫苗的早期经验在肾脏移植者中突破。 移植感染。 2021; 23:e13654。 15。 Malinis M,Cohen E,Azar MM。 SARS-COV-2疫苗在完全疫苗接种的固体器官移植受体中的有效性。 Am J Trans-wlter。 2021; 21(8):2916-2918。 16。 QIN CX,Moore LW,Anjan S等。 成人移植受者突破SARS-COV-2感染的风险。 移植。 2021; 105:e265-e266。 17。2007; 7(3):633-638。Cowan M,Chon WJ,Desai A等。 免疫抑制对稳定的肾脏跨植物受体中流感疫苗接种的免疫反应的影响。 移植。 2014; 97(8):846-853。 12。 Loinaz C,De Juanes JR,Gonzalez EM等。 乙型肝炎疫苗导致140例肝移植受者。 肝胃肠病学。 1997; 44(13):235-238。 13。 anjans,natoriy,fernandezbetancesaa,etal。在佛罗里达州迈阿密的固体器官移植物中mRNA疫苗接种后的BreakThroughCovid- 19感染。 移植。 2021; 105(10):E139-E141。 14。 Chenxi Song C,Christensen J,Kumar D,Vissichelli N,Morales M,Gupta G. Sars-Cov-2 mRNA疫苗疫苗的早期经验在肾脏移植者中突破。 移植感染。 2021; 23:e13654。 15。 Malinis M,Cohen E,Azar MM。 SARS-COV-2疫苗在完全疫苗接种的固体器官移植受体中的有效性。 Am J Trans-wlter。 2021; 21(8):2916-2918。 16。 QIN CX,Moore LW,Anjan S等。 成人移植受者突破SARS-COV-2感染的风险。 移植。 2021; 105:e265-e266。 17。Cowan M,Chon WJ,Desai A等。免疫抑制对稳定的肾脏跨植物受体中流感疫苗接种的免疫反应的影响。移植。2014; 97(8):846-853。12。Loinaz C,De Juanes JR,Gonzalez EM等。 乙型肝炎疫苗导致140例肝移植受者。 肝胃肠病学。 1997; 44(13):235-238。 13。 anjans,natoriy,fernandezbetancesaa,etal。在佛罗里达州迈阿密的固体器官移植物中mRNA疫苗接种后的BreakThroughCovid- 19感染。 移植。 2021; 105(10):E139-E141。 14。 Chenxi Song C,Christensen J,Kumar D,Vissichelli N,Morales M,Gupta G. Sars-Cov-2 mRNA疫苗疫苗的早期经验在肾脏移植者中突破。 移植感染。 2021; 23:e13654。 15。 Malinis M,Cohen E,Azar MM。 SARS-COV-2疫苗在完全疫苗接种的固体器官移植受体中的有效性。 Am J Trans-wlter。 2021; 21(8):2916-2918。 16。 QIN CX,Moore LW,Anjan S等。 成人移植受者突破SARS-COV-2感染的风险。 移植。 2021; 105:e265-e266。 17。Loinaz C,De Juanes JR,Gonzalez EM等。乙型肝炎疫苗导致140例肝移植受者。肝胃肠病学。1997; 44(13):235-238。 13。 anjans,natoriy,fernandezbetancesaa,etal。在佛罗里达州迈阿密的固体器官移植物中mRNA疫苗接种后的BreakThroughCovid- 19感染。 移植。 2021; 105(10):E139-E141。 14。 Chenxi Song C,Christensen J,Kumar D,Vissichelli N,Morales M,Gupta G. Sars-Cov-2 mRNA疫苗疫苗的早期经验在肾脏移植者中突破。 移植感染。 2021; 23:e13654。 15。 Malinis M,Cohen E,Azar MM。 SARS-COV-2疫苗在完全疫苗接种的固体器官移植受体中的有效性。 Am J Trans-wlter。 2021; 21(8):2916-2918。 16。 QIN CX,Moore LW,Anjan S等。 成人移植受者突破SARS-COV-2感染的风险。 移植。 2021; 105:e265-e266。 17。1997; 44(13):235-238。13。anjans,natoriy,fernandezbetancesaa,etal。在佛罗里达州迈阿密的固体器官移植物中mRNA疫苗接种后的BreakThroughCovid- 19感染。移植。2021; 105(10):E139-E141。14。Chenxi Song C,Christensen J,Kumar D,Vissichelli N,Morales M,Gupta G. Sars-Cov-2 mRNA疫苗疫苗的早期经验在肾脏移植者中突破。移植感染。2021; 23:e13654。15。Malinis M,Cohen E,Azar MM。SARS-COV-2疫苗在完全疫苗接种的固体器官移植受体中的有效性。Am J Trans-wlter。2021; 21(8):2916-2918。16。QIN CX,Moore LW,Anjan S等。成人移植受者突破SARS-COV-2感染的风险。移植。2021; 105:e265-e266。17。CDC COVID-19疫苗突破调查小组。COVID- 19疫苗突破性感染向CDC报告 - 美国1月1日至4月30日,2021年。MMWR Morb Mortal WklyRep。2021; 70(21):792-793。 doi:10.15585/mmwr.mm7021e3 18。Pillai SK,Beekmann SE,Santibanez S,Polgreen PM。传染病学会新兴感染网络:弥合临床传染病与公共卫生之间的差距。临床感染。2014; 58(7):991-996。 19。 Ravanan R,Mumford L,Ushiro-Lumb I等。 两剂SARS- COV-2疫苗降低了固体器官移植受者的COVID-19引起的死亡风险:英国注册表链接分析的初步结果。 移植。 2021; 105(11):E263-E264。 20。 Heldman先生,Kates OS,Safa K等。 在大流行期间,固体器官移植受者在Covid-19中的死亡率趋势改变了死亡率。 Am J移植。 2021。https:// doi。 org/10.1111/ajt.16840 21。 Tenforde MW,Patel MM,Ginde AA等。 SARS-COV-2 mRNA疫苗可预防19. 中的Covid-192014; 58(7):991-996。19。Ravanan R,Mumford L,Ushiro-Lumb I等。 两剂SARS- COV-2疫苗降低了固体器官移植受者的COVID-19引起的死亡风险:英国注册表链接分析的初步结果。 移植。 2021; 105(11):E263-E264。 20。 Heldman先生,Kates OS,Safa K等。 在大流行期间,固体器官移植受者在Covid-19中的死亡率趋势改变了死亡率。 Am J移植。 2021。https:// doi。 org/10.1111/ajt.16840 21。 Tenforde MW,Patel MM,Ginde AA等。 SARS-COV-2 mRNA疫苗可预防19. 中的Covid-19Ravanan R,Mumford L,Ushiro-Lumb I等。两剂SARS- COV-2疫苗降低了固体器官移植受者的COVID-19引起的死亡风险:英国注册表链接分析的初步结果。移植。2021; 105(11):E263-E264。20。Heldman先生,Kates OS,Safa K等。在大流行期间,固体器官移植受者在Covid-19中的死亡率趋势改变了死亡率。Am J移植。2021。https:// doi。org/10.1111/ajt.16840 21。Tenforde MW,Patel MM,Ginde AA等。 SARS-COV-2 mRNA疫苗可预防19. 中的Covid-19Tenforde MW,Patel MM,Ginde AA等。SARS-COV-2 mRNA疫苗可预防19. 中的Covid-19SARS-COV-2 mRNA疫苗可预防19.
使用循环神经网络从神经测量重建计算动力学 Daniel Durstewitz 1,2,3,*、Georgia Koppe 1,4、Max Ingo Thurm 1 1 海德堡大学医学院中央精神卫生研究所理论神经科学系 2 海德堡大学跨学科科学计算中心 3 海德堡大学物理与天文学院 4 海德堡大学医学院中央精神卫生研究所精神病学和心理治疗诊所* 通讯作者:daniel.durstewitz@zi-mannheim.de 关键词:动力系统理论、机器学习、循环神经网络、吸引子、混沌、多个单元记录、神经生理学、神经成像 摘要 神经科学中的机械和计算模型通常采用微分或时间递归方程组的形式。此类系统的时空行为是动力系统理论 (DST) 的主题。 DST 提供了一个强大的数学工具箱,用于描述和分析从分子到行为的任何级别的神经生物学过程,几十年来一直是计算神经科学的支柱。最近,循环神经网络 (RNN) 成为一种流行的机器学习工具,用于研究神经或行为观察背后的非线性动力学。通过在与动物受试者相同的行为任务上训练 RNN 并剖析其内部工作原理,可以产生关于行为的神经计算基础的见解和假设。或者,可以直接在手头的生理和行为时间序列上训练 RNN。理想情况下,一旦训练好的 RNN 将能够生成具有与观察到的相同的时间和几何属性的数据。这称为动态系统重建,这是机器学习和非线性动力学中一个新兴的领域。通过这种更强大的方法,就其动态和计算属性而言,训练过的 RNN 成为实验探测系统的替代品。然后可以系统地分析、探测和模拟训练过的系统。在这里,我们将回顾这个令人兴奋且迅速发展的领域,包括机器学习的最新趋势,这些趋势在神经科学中可能还不太为人所知。我们还将讨论基于 RNN 的动态系统重建的重要验证测试、注意事项和要求。概念和应用将通过神经科学中的各种示例进行说明。简介理论神经科学的一个长期原则是,神经系统中的计算可以用底层的非线性系统动力学来描述和理解(Amit & Brunel,1997;Brody & Hopfield,2003;Brunel,2000;Durstewitz,2003;Durstewitz 等,1999、2000、2021;Hodgkin & Huxley,1952;Hopfield,1982;Izhikevich,2007;Machens 等,2005;Miller,2016;Rinzel & Ermentrout,1998;Wang,1999,2002;Wilson,1999;Wilson & Cowan,1972)。相关思想可以追溯到 40 年代 McCulloch & Pitts (1943)、Alan Turing (1948) 和 Norbert Wiener (1948) 的工作,并在 80 年代早期通过 John Hopfield (1982) 的开创性工作获得了发展势头,该工作将记忆模式嵌入为简单循环神经网络中的固定点吸引子。Hopfield 网络的美妙之处在于它们免费提供了生物认知系统的许多特性,例如自动模式完成、通过部分线索进行内容可寻址记忆检索或对部分病变和噪声的鲁棒性。通过动态系统理论 (DST) 的视角来观察神经计算特别有力,因为一方面,许多(如果不是大多数)物理和生物过程都是自然形式化的
道路 ID 网格 ALTSCHWAGERS LANE 2B ANDRES LANE 1B ARGYLE LANE 2B ARGYLE ROAD 2B BALLENTYNES ROAD 1B BANYA ROAD 2B BATEMANS ROAD 2B BEACHPORT-FURNER ROAD 2B BEACHPORT-PENOLA ROAD 2B BELLS ROAD 2B BELLS ROAD 2B BELT ROAD 2B BEVILAQUA FORD ROAD 2B BLACK DRAIN ROAD 2B BLACK LANE 3B BOB WILSON LANE 2B BOG LANE 1A BOUCHIERS ROAD 2B BOWMAN ROAD 2B BURKHILLS LANE 3B CANUNDA CAUSEWAY 3B CANUNDA FRONTAGE ROAD 3B CAPE BUFFON DRIVE 2B CATALPA LANE 1B CHANT ROAD 3B 克里斯蒂娜·史密斯大道 2B 克莱威尔斯路 1B 1C 克利福德路 2B 康穆拉路 1B 科万巷 2B 邓斯路 2B 东路 2B 爱德华巷 3B 埃尔金巷 1B 恩德比巷 3B 恩德比路 3B 艾斯本德路 2B 艾斯巷 2B 芬索姆斯路 2B FIGG 巷 2B 福克斯巷 1B 弗纳-雷德希尔路 2B 弗纳路 2B 吉尔克里斯特巷 2B 吉拉普夏季赛道 1B 格拉尼巷 3B 古尼路 2B 汉恩路 3B 亨克尔曼路 2B 霍根巷 2B 赫特弗拉特路 2B 伊卢卡路2B 詹宁斯巷 2B 乔根森斯路 1B 肯普斯路 2B 科内金巷 1B 邦尼湖通道 3B 邦尼湖路 3B 乔治湖路 1A 乔治湖路 2A 湖景路 3B 朗斯路 3B 莱格斯巷 1B 乐高路 1A 莱巴路 2B 玛格丽斯巷 2B 主路 300 路 2B 梅约尔路 2B 玛尤拉路 3B 麦克阿瑟路 2B 麦克阿瑟斯夏季跑道 2B 麦考尔路 2B 麦当劳夏季跑道 2B 麦金农巷 2B 米利森特路 2A 米申站路 2B 芒特霍普道路 2B MUNTRIE 路 2B NINDE PARK 路 3B OLD COACH 路 2B OLD SUMMER TRACK 2B OLD TELEGRAPH 路 2B PEACH TREE 路 2B PETHERS 巷 2B PICCANINNY 巷 2B PINCHGUT 路 3B POOLES 路 2B POOLNA SPRINGS 路 2B PRINCES 高速公路 1B 2B 3C RANGE 路 2B RIVETT HILL 路 3B SCARWOOD 路 3B SCENIC DRIVE 2A SCHOOL 路 2B SEBASTOPOL SPRING 路 2B SHELL GRIT HILL 路 3B SNEYD ISLAND 路 1B SOUTHEND ACCESS 路 2B SOUTHERN PORTS 高速公路 1A 2B STAFFORD 路3B 斯托尼路 3B 斯特拉特福德巷 3B 斯塔基巷 2B 汤普森路 2B 塔克斯巷 1B 沃维克路 3B 韦克林路 2B 沃克斯斯克鲁布路 2B 沃利斯路 2B 沃森夏季赛道 1B 瓦特尔格罗夫路 3B 怀特黑德路 2B 威洛班克路 2B 威雷帕多克路 2B 维特米茨路 2B 沃克温切割路 1A 怀里路 3B