嵌合抗原受体(CAR)T细胞疗法改变了恶性肿瘤免疫疗法的景观,从根本上改变了传统的癌症治疗策略。然而,对T细胞转染的病毒载体的依赖构成了局限性,从而阻碍了这种有希望的治疗方法的更广泛应用。使用非病毒载体用于CAR-T细胞制备,在下一代疗法中已成为一种更通用和可持续的替代方法。转座元素(TES)是1940年代芭芭拉·麦克林托克(Barbara McClintock)在玉米中首先发现的(1)(1)的移动DNA序列,这些序列是由由反向末端重复序列(ITRS)和转座酶组成的基因片段组成的。该酶有助于转座子从其原始DNA位点切除,并将其整合到新的基因组位置。可以将其分为逆转座子,并切成两个主要类别的转座机制(2)。剪切的转座子需要对两种ITR的转座酶识别,以从其源中切除DNA转座子并将其整合到其他地方(3)。这种固有的插入DNA的能力使剪切的转座可以用于基因组操纵的强大工具(4-7)。
a 意大利帕多瓦大学医学系 - DIMED b 意大利帕多瓦帕多瓦大学医院病理学系 c 意大利特雷维索 Marca Trevigiana ULSS2 医院病理学系 d 意大利帕多瓦威尼托肿瘤研究所 IOV-IRCCS e 意大利帕多瓦帕多瓦大学医院外科、肿瘤学和胃肠病学系(DiSCOG)普通外科 3 f 意大利维罗纳大学与医院信托病理学科诊断与公共卫生系 g 意大利热那亚大学外科科学与综合诊断学系(DISC)解剖病理学 h 意大利热那亚 IRCCS Ospedale Policlinico San Martino,意大利热那亚大学外科科学与综合诊断学系(DISC) i 病理学研究单位,Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, 福贾, 意大利
DNA 甲基化是一种关键的表观遗传修饰,可调节基因表达并在发育和疾病过程中发挥重要作用。在这里,我们介绍了胞嘧啶-磷酸-鸟嘌呤预训练转换器 (CpGPT),这是一种新颖的基础模型,在 1,500 多个 DNA 甲基化数据集上进行了预训练,涵盖来自不同组织和条件的 100,000 多个样本。CpGPT 利用改进的转换器架构来学习甲基化模式的综合表示,使其能够从有限的输入数据中推断和重建全基因组甲基化谱。通过捕获序列、位置和表观遗传背景,CpGPT 在针对与衰老相关的任务进行微调时优于专门的模型,包括按时间顺序的年龄预测、死亡风险和发病率评估。该模型在不同的甲基化平台和组织类型中具有很强的适应性。此外,对样本特定注意力权重的分析可以识别出对个体预测最有影响力的 CpG 位点。 CpGPT 作为基础模型,为 DNA 甲基化分析树立了新的标杆,在
CDCA7,用羧基末端半胱氨酸结构域(CRD)编码蛋白质,在免疫缺陷,丝状不稳定性和面部异常(ICF)综合征中突变,这种疾病与近二酸 - 近甲基卫星DNA的甲基化有关。CDCA7如何将DNA甲基化引导到并置玻璃液区域是未知的。在这里,我们表明CDCA7 CRD采用了独特的锌结合结构,该结构识别由两个序列基序形成的非B DNA中的CpG二元组。CDCA7,但不是ICF突变体,优先通过链特异性CpG半甲基化结合非B DNA。未甲基化的序列基序高度富集在人类染色体的centromeres上,而甲基化基序分布在整个基因组中。在S期,CDCA7而不是ICF突变体集中在组成型异染色质灶中,并且通过由CRD结合的外源半甲基化的非B DNA可以抑制这种灶的形成。在DNA复制过程中在近齿粒区域中形成的非B DNA的结合提供了一种机制,通过该机制CDCA7控制DNA甲基化的特异性。
PDE4C 中的区域保持稳定超过三个月。此外,表观遗传编辑引发了许多全基因组脱靶效应,这些效应具有高度可重复性,并在其他与年龄相关的 CpG 中富集 - 因此,它们不是随机的脱靶效应,而似乎类似于共同调节的表观遗传旁观者修饰。年龄相关位点的 4C 染色质构象分析显示与旁观者修饰和其他与年龄相关的 CpG 位点的相互作用增加。随后,我们在 HEK293T 和原代 T 细胞中的五个基因组区域多重分析了表观遗传修饰,这些区域在衰老时会变得高甲基化或低甲基化。虽然在年龄低甲基化的 CpG 处进行的表观遗传编辑似乎不太稳定,但它也导致其他与年龄相关的 CpG 处旁观者修饰明显富集。相反,表观遗传时钟往往会在靶向 DNA 甲基化后长达十年内加速,尤其是在高甲基化的 CpG 处。这些结果表明,有针对性的表观基因组编辑可以调节整个表观遗传衰老网络,从而干扰表观遗传时钟。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2023年11月30日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.02.04.527050 doi:Biorxiv Preprint
成簇的规律间隔的短回文重复序列 (CRISPR)/相关核酸酶 (Cas) 的优异特异性和选择性是由 CRISPR RNA (crRNA) 的可互换间隔序列以及靶序列和 crRNA 序列之间的错配位置和数量决定的。某些疾病的特征是表观遗传改变而不是核苷酸变化,因此不适合 CRISPR 辅助传感方法。在这里,我们展示了一种体外诊断工具,通过使用甲基化敏感的限制性酶 (MSRE) 然后进行 Cas12a 辅助传感来区分 DNA 中的单个 CpG 位点甲基化。非甲基化序列被 MSRE 消化,导致靶序列碎片化,从而影响 crRNA 和靶 DNA 之间的 R 环形成。我们表明,片段大小、片段位置和片段数量会影响随后对单链 DNA (ssDNA) 的附带反式切割活性,从而可以从切割活性中推断出甲基化位置。利用 MSRE 与 Cas12a 结合,可以确定癌症基因的单个 CpG 位点甲基化水平。Cas12a 和 MSRE 的模块化为 Cas12a - MSRE 组合传感方法提供了高度的多功能性,这为轻松快速地研究单个 CpG 甲基化位点以进行疾病检测提供了可能性。
adeno相关的病毒(AAV)向量已成为体内基因替代疗法的首选平台,并代表了治疗单基因疾病(如血友病)的最有希望的策略之一。然而,对基因转移的免疫反应在临床试验中阻碍了人类基因治疗。在过去的十年中,很明显,先天免疫识别为诱导抗原特异性反应提供了信号,以针对载体或转基因产物产生。尤其是,TLR9识别对静脉细胞类树突状细胞(PDC)中载体的DNA基因组的识别已被鉴定为关键因素。来自临床试验和临床前研究的数据在矢量基因组中实施CpG基序,作为免疫反应的驱动因素,尤其是CD8 + T细胞激活的驱动因素。在这里,我们证明了AAV capsid特异性CD8 + T细胞的交叉化是否取决于XCR1 +
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 1 月 5 日发布。;https://doi.org/10.1101/2020.06.19.161687 doi:bioRxiv 预印本
摘要:结肠癌占所有结直肠癌的三分之二以上,总 5 年生存率为 64%,当癌症发生转移时,这一比例迅速下降到 14%。根据结肠癌诊断时的分期,患者可以接受手术以尝试完全切除肿瘤,或直接使用一种或多种药物进行化疗。与大多数癌症一样,结肠癌并不总是对化疗有反应,因此已经开发了靶向疗法和免疫疗法来辅助化疗。我们报告了一种结肠癌局部联合疗法的开发,其中化疗和免疫治疗实体被递送到肿瘤内以最大限度地提高疗效并最大限度地减少靶向副作用。疏水性化疗剂多西他赛 (DTX) 和胆固醇修饰的 Toll 样受体 9 (TLR9) 激动剂 CpG (cho-CpG) 寡核苷酸共同装载在合成 HDL (sHDL) 纳米盘中。用 DTX-sHDL / CpG 进行肿瘤内治疗的 MC-38 肿瘤小鼠的体内生存分析(中位生存期;MS = 43 天)表明,与用单一药物、游离 DTX(MS = 23 天,p < 0.0001)或 DTX-sHDL(MS = 28 天,p < 0.0001)治疗的小鼠相比,总体生存率显著提高。用 DTX-sHDL / CpG 治疗的七只小鼠中有两只肿瘤完全消退。所有小鼠均未出现任何全身毒性,体重维持和血清酶和蛋白质水平正常。总之,我们已经证明化疗和免疫疗法可以共同加载到 sHDL 中,局部递送到肿瘤,并且与单独化疗相比,可用于显着改善生存结果。