由于封装设计的复杂性,镀层表面镀层厚度分布不均匀已成为电镀行业的一大挑战。在大多数情况下,根据所需的封装设计规范将镀层厚度均匀性控制在特定区域对于制造商来说是一项艰巨的任务,会导致高损失。镀层厚度均匀性与电镀工艺参数和阳极到阴极之间的电流通过密切相关。为了处理电流通过,控制阳极和阴极之间布置区域的屏蔽技术可能是一种有效的方法。因此,本文的目的是研究使用改进的机械屏蔽来改善锡镀层厚度均匀性的电镀工艺参数(电流和速度)。采用田口方法来缩小实验规模并同时优化工艺参数。结果,建立了新的参数,该参数提供理想的镀层厚度,变化较少,Cpk稳定。从所进行的实验工作表明,通过采用正确的物理电阻屏蔽孔径,能够选择性地改变或调节实施例中阳极和电镀表面之间的电场,从而控制整个电镀表面区域的电沉积速率。
Linamar Corporation 8524 Upper Grand District School Board 4500 University of Guelph 4490 Alectra 1500 Cargill Meat Solutions 1500 City of Guelph 1500 Polycon Industries 1500 The Co-operators 1000 Wellington Catholic District School Board 1000 Camcor Manufacturing 770 Skyjack Inc |工厂 1 731 Homewood 健康中心 730 圭尔夫制造集团公司 700 DENSO 加拿大制造公司 650 Blount 加拿大有限公司 600 Hammond 制造有限公司 531 滑铁卢惠灵顿地方健康综合网络 520 Linamar Gear 503 Hastech 制造 457 Linamar 性能中心 427 CpK 室内产品公司 420 CMHA 滑铁卢惠灵顿 400 Comtech 制造 400 雀巢加拿大水公司 400 Sleeman 啤酒有限公司 400 Vehcom 制造 381 Quadrad 制造 375 YMCA - 圭尔夫 YWCA 375 Camtac 制造 360 日立建筑卡车制造有限公司 360 Autocom 制造 356 Linex 制造 314 加拿大太阳能解决方案公司 300 Hammond 电源解决方案 300 Skyjack 公司 |工厂 2 288 Linergy 制造 286 Spinic 制造 278 Semex 275 LPP 制造 271 Shearer's Food Canada Inc 270 Roctel 制造 266 RWDI 264 Traxle 制造 260 Elements Casino Mohawk 250
ph: +82-041-925-1389电子邮件:yuseon.heo@samsung.com摘要移动设备有限的热预算几乎不允许全速使用高性能应用程序(AP)。但是,由于人工智能技术已迅速应用于移动设备,因此高速和大容量信号处理等需求正在不断增加。因此,控制AP芯片的热量生成成为关键因素,并且有必要开发基于重分配层(RDL)的风扇外套件(FOPKG)结构,该结构不会增加包装的厚度,同时最大程度地提高耗散量的厚度。CU柱的高度在产生可能施加厚的Fopkg的高度正在越来越高,并且在这项研究中,开发了世界上最厚的光孔材料(> 350UM厚度),以生产Cu Post(> 300UM厚度)。研究了光震鼠的光透射率的影响以及根据主聚合物的分子结构的溶解度的影响,以进行厚光构师的光刻过程。基于对这种厚的光质危行为的理解,开发了最佳的液体类型的光蛋白天抗事组成。通过光刻评估基于厚的光片特性,通过实施和CU电镀板进行深孔,以在AP产品设计施加的晶片中获得CPK 1.27的产率。关键字风扇外包装,厚度厚度光抗光毒师,Cu Post取决于对厚光构师的深入理解和实验,可以建立高级研究基础,以增加光孔厚度和更精细的CU后俯仰,以确保散热特征并提高建筑的自由度。
摘要 — 中风是指血凝块阻塞大脑某个区域的血液供应(缺血性中风)或动脉破裂或出血(出血性中风)。中风后寻求医疗救治可能会增加存活机会并减少长期脑损伤。神经影像学有助于确定治疗对象和治疗方式,尽管它成本高昂、并非总是可行,并且可能有禁忌症。这些限制导致这些再灌注治疗未得到充分利用。使用能够持续区分缺血性中风和脑出血的血液生物标志物组可能非常有益且易于部署。因此,本研究描述了一种加速和改善中风诊断的系统。使用四种机器学习算法:支持向量机 (SVM)、自适应神经模糊推理系统 (ANFIS)、K 最近邻 (KNN) 和决策树 (DT),我们旨在找到有希望用于鉴别中风诊断的血液生物标志物候选物。我们创建了一个两阶段二元分类器模型,将中风组与正常组进行分类,然后将分配给中风组的实例分为缺血性组和出血性组。根据我们的数据,我们的研究结果表明,在区分埃及患者的中风方面,SVM 比 ANN、ANFIS 和 DT 更好。最重要的血液特征是绝对 (ABS) 中性粒细胞、肌酸磷酸激酶 (CPK)、中性粒细胞/中性粒细胞和白细胞 (WBC) 计数/白细胞实验室测试,这些测试可作为中风诊断的关键和重要指征。所选特征和两阶段二元分类器以更高的准确度进行区分(缺血性和出血性患者)。这种识别和分类脑中风的方法准确、易于使用且经济高效。
C … Celsius 8D … Eight Disciplines Problem Solving Process AC … Alternating Current ACC … Automotive Cells Company AD … Anno Domini AD … Active Directory AGV … Automated Guided Vehicle AIA … Automotive Industry Association of the Czech Republic APQP … Advanced Product Quality Planning AQP … Advanced Quality Process ARPA-E … Advanced Research Projects Agency-Energy bcm … Billion Cubic Meters BESS … Battery Energy Storage System BEV … Battery Electric Vehicle BMA … Bayesian Model Averaging BMS … Battery Management System BOM … Bills of Material BOP … Balance Of Plants B-RTG … Battery RTG CAES … Compressed air energy storage systems CAGR … Compound annual growth rate CAPA … Corrective Action and Preventive Action CAPEX … CAPital EXPansion CE … Conformitè Europëenne (French) CEAP … Circular Economy Action Plan CEDEFOB … The European Centre for the Development of Vocational Training CHE … Cargo handling equipment CO2 … Carbon dioxide COPQ … Cost of Poor Quality CP … Cyber-Physical CPD … Continuing Professional Development Cpk … Process Capability Index CPO … Chief Product Officer CTO … Chief Technology Officer DC … Direct Current DFMEA … Design Failure Mode and Effect analysis DMAIC … Define, Measure, Analyze, Improve and Control DoC … Drivers of Change DoE … Design of Experiments DP … Deep sea port DPAR … Design Process Assembly Review E&E … Electrical和电子EBA…欧洲电池联盟EERE…能源效率和可再生能源EESC…欧洲经济和社会委员会
8 2MORO SOLUTIONS G168 8 3R RESEARCH AND PROJECTS RÉMY EF152 9 A&T AEROSPACE F135 9 A2C ADVANCED CARBIDE COATING G128 10 ACDC PARTNERS F120 10 AS INDUSTRIES F154 11 ADB E175 11 ADDEV MATERIALS (DIMEX) F126 12 ADHETEC E162 12 AEREM F125 13 AEROCAMPUS阿基坦 F166 13 AERO COMPOSITES 圣通日 F149 14 AERO SERVICES F133 14 AERO NEGOCE INTERNATIONAL E139 15 AEROTEAM 普瓦图-夏朗德 F149 15 AFPA F166 16 AGB - AEMI 集团 G143 16 空中支援 E133 17 机载概念 G127 17 ALGO'TECH G119 18 ALISAERO E167 18 西南激光应用 D136 19 AQUITAINE ELECTRONIQUE G152 19 ATECA F119 20 ATELIERS BIGATA - CEMG AEROSAUVETAGE - CTS CONSULTING G166 20 AUNIS PRODUCTION INDUSTRIE F149 21 AUROCK F157 21 BAC BOBINAGE F148 22 BEZY AERO - STOKVIS TAPES 法国 G133 22 BODYCOTE E124 23 波尔多 TECHNOWEST F133 23 BUSBY METALS D134 24 C3 TECHNOLOGIES F150 24 CESA-DRONES F133 25 CGR CRISTIN F134 25 CHROME DUR INDUSTRIEL F149 26 CIR E134 26 CLIP INDUSTRIE F138 27 COEURJOLY ETS F149 27 COFIDUR EMS G151 28 COMAT E146 28 CPK CONSULT F166 29 CSA G153 29 DATADVANCE F157 30 DEBITEX G175 30 DIODON 无人机技术 F157 31 DIOTA F166 31 DYNAS+ F157 32 埃切维里亚 G158 32 ELIXIR AIRCRAFT 停机坪 33 EMD BY PIXIEL F166 33 ENSEIGNES HODÉ E128 34 ERME SAS DE135 34 ESTEVE SA D170 35 EXCENT D156 35 FALGAYRAS E165 36 FEDD E176 36 FEELOBJECT F157 37 FLEURET D176 37 FLUOROTECHNIQUE G148 38 FLYOPS E172 38 BÉLIER 铸造厂和车间 G176 39 FREYSSINET 航空涂层 D166 39 FREYSSINET 航空设备
rinvoq®15mg / 30 mg / 45 mg标准片;活性成分:upadacitinib;组成:1 Rinvoq 15 mg / 30 mg / 45 mg标准片含有Upadacitinib 0.5 H 2 O,对应于15 mg / 30 mg / 30 mg / 45 mg upadacitinib。其他成分:片剂核心:微晶纤维素,氢化症,甘露醇,葡萄栽培,高降解二氧化硅,硬脂酸镁;膜涂料:聚(乙烯基醇),大戈尔,谈话,钛氧化物(E171),铁(III) - 氧化物(E172);仅在Rinvoq 15 mg中:铁(II,III)氧化物(E172);仅在rinvoq 45 mg中:铁(III)氧化物氧化物X H 2 O(E172)。应用:RINVOQ 15 mg:中等至严重的活性类风湿关节炎,在不足,耐受或耐受抗炎药(DMARDS)(单独或与甲氨蝶呤(MTX)结合使用)的成年人中。活跃的牛皮癣关节炎在成年人中不充分地解决或不忍受一个或多个DMARD(单独或与MTX结合)。与常规疗法交谈的成年人中的活跃强直性脊柱炎不足。具有炎症的成年人的活性非轴向脊椎关节炎,这是由C反应性蛋白增加和/或通过磁共振成像证明的,而磁共振成像不足以接近NSAR。rinvoq 15 mg / 30 mg:在12岁起适合全身治疗的成年人和青少年中,成人和青少年的严重特应性皮炎。rinvoq 15 mg / 30 mg / 45 mg:在不足以解决常规疗法或生物学的成年人中,对激烈的溃疡性结肠炎的中等缺陷,不再对它们做出反应或不容忍。在对常规疗法或生物学反应不足的成年人中,对严重的活性疾病的中等症 - 不再吸引他们或不容忍生物学。禁忌症:对其中一个组成部分的超敏反应;活跃的结核病;主动严重感染;重肝功能;怀孕。副作用:上呼吸道的感染;支气管炎;带状疱疹;单纯疱疹;卵泡炎;流感;尿路感染;肺炎;口腔念珠菌;憩室炎;败血症;非黑素皮肤癌;贫血;中性粒细胞减少症;淋巴细胞减少症; urtikaria;严重的超敏反应;高胆固醇;高脂血症;高甘油三酸酯血症;头痛;头晕;旋转损失;咳嗽;腹痛;恶心;胃肠道穿孔;粉刺;皮疹;疲劳;发烧; CPK的血液增加;升高的;分支增加;体重增加;
近年来,植物基因组学取得了重大进展,研究人员能够识别负责植物生长、发育和逆境反应的基因和基因组区域。2019 年植物基因组学特刊汇集了 57 篇论文,深入探讨了植物基因组学的各个方面,包括基因发现、数量性状位点(QTL)鉴定、基因组预测、基因组编辑、植物叶绿体基因组测序和比较分析、microRNA 分析和比较基因组学。这些研究广泛采用结合生物信息学和转录组分析的综合研究方法来识别响应各种生物和非生物逆境的基因 [ 1 , 2 ]。该方法包括(1)从参考基因组及其注释中全基因组识别所研究的基因家族,对已识别基因进行生物信息学分析,如染色体分布、基因结构、相似性和重复、保守结构域和基序分析以及系统发育分析; (2) 使用来自 Illumina RNA-Seq 测序和/或实时 PCR 分析的转录组数据,对不同胁迫处理下不同发育阶段的不同组织进行表达谱分析,并研究响应研究性状的基因沉默。使用这种方法,在 22 篇论文中,研究了已报道的各种基因家族,以识别响应非生物胁迫、果实成熟、种子发育、种子产量和花粉发育的基因,涉及 12 多个物种,例如番茄、小麦、桉树、烟草、葡萄、拟南芥、番茄、木薯、芜菁、陆地棉、谷子和西瓜。这些基因家族包括2-氧代戊二酸依赖性双加氧酶(2OGD)、细胞分裂素氧化酶/脱氢酶(CKX)、钙依赖性蛋白激酶(CPK)、核转运蛋白β、VQ、水通道蛋白、赤霉酸刺激的拟南芥(GASA)、YABBY转录因子、B3结构域转录因子、多聚半乳糖醛酸酶(PG)和果胶甲酯酶(PME)、MADS-box转录因子、WRKY转录因子、teosinte-branched 1/cycloidea/增殖(TCP)转录因子、III类过氧化物酶(POD)、糖苷水解酶家族1β-葡萄糖苷酶、RNA编辑因子、蛋白磷酸酶(PP2C)、LIM、油菜素类固醇信号激酶(BSK)和查尔酮合酶(CHS)。微小RNA(miRNA)是一类小RNA分子,在基因表达中发挥着重要的调控作用。两篇论文探讨了miRNA在不同植物物种中的作用。第一篇论文开发了一种人工miRNA前体系统,可以在拟南芥和水稻中高效克隆和沉默基因。该系统可以成为这些作物功能基因组学研究的宝贵工具[3]。第二篇论文鉴定并描述了亚麻籽(一种重要的油料作物)正在发育的种子中的miRNA[4]。结果表明,miRNA 在种子发育过程中发挥着重要作用,可以作为作物改良的靶标。总体而言,这些研究有助于我们了解 miRNA 在植物生长发育中的调控作用,并有望应用于作物改良。GWAS 已广泛用于识别与植物重要性状相关的 QTL 或数量性状核苷酸 (QTN)。本期的一篇精彩论文是关于与西瓜驯化相关的瓜氨酸变异的 GWAS 匹配单倍型网络 [ 5 ]。该论文确定了控制瓜氨酸合成的基因组区域,瓜氨酸是一种非蛋白氨基酸,在植物的生长发育中起着至关重要的作用。