式中,t为钢材厚度,MS为低碳钢,HT为高强度钢。船体结构钢分为普通厚度钢和高强度钢。普通强度钢按质量分为A、B、C、D四个等级;高强度钢分为AH32、DH32、EH32、AH36、DH36、EH36两个强度等级和三个质量等级。
计算方法的最新进展和大量已发表的复合材料损伤机制传播成功表示的演示表明,可靠的复合材料结构虚拟测试工具即将取代设计和认证过程中的一些机械测试。鉴于这些快速发展和所提出方法的明显多样性,有必要制定一个给定模型在什么条件下可以预期工作以及何时不再适用。在本章中,我们研究了预测复合材料损伤所需的基本概念,旨在提供基础来帮助选择必要、物理合理且计算上可处理的理想化。讨论了连续损伤力学模型中断裂扩展的客观性问题,并探讨了扩展有限元法在避免这些困难方面的应用。
• 特定诊所或小组工作计划 • 提供健康检查,特别关注可卡因/快克使用者的担忧 • 强调为那些担心自己吸食的人提供 IEP 和治疗 • 在 IEP 的同时提供快克烟斗 • 利用低门槛药物计划的强度,为同时使用阿片类药物和可卡因的人提供服务,让人们接受可以减少伤害和提供密切支持的服务。 • 使用 WAND 干预措施(针对高风险注射用户的伤害减少干预措施,通过向参与者提供代金券进行激励)来吸引人们 尽可能广泛地宣传上述所有内容(包括通过紧急服务、候诊室、IEP 等) 与有生活经验的人进一步合作,以确定可能吸引用户参与的优惠(包括替代疗法、有利环境、可能提供的干预措施等。 外展、内展和应对危机(MAT 3)
量化疲劳裂纹扩展对于断裂关键工程部件和结构的损伤容限评估至关重要。疲劳裂纹扩展表征历史上的第一个重大事件是使用应力强度因子范围 D K 来关联疲劳裂纹扩展速率,由 Paris 等人 1 基于三项独立研究得出。Rice 2 在连续力学框架内进一步合理化了这种方法,认为疲劳裂纹扩展速率数据可能与应力强度因子范围相关。此后,人们普遍认为,在小规模屈服 (SSY) 条件下的大多数工程应用中,使用弹性应力强度因子范围 D K 就足够了,尽管大约在同一时间人们也认识到了载荷比 R 的作用,3
在航空航天工业中,疲劳裂纹扩展对飞机结构机械装配设计构成了严重威胁。在这些结构中,裂纹扩展是一个需要认真处理的问题,因为除了经济损失之外,还会影响人员生命安全。疲劳裂纹扩展 (FCG) 速率是在恒定振幅载荷作用下,裂纹随循环数增长的速率。分析曲线后发现,应力强度因子 (SIF) 范围“ ∆𝐾 ”与 FCG 速率“ 𝑑𝑎 𝑑𝑁 ⁄ ”之间的相关性呈偏离线性关系,曲线的区域 II 也称为巴黎区域。经验公式方法不能令人满意地处理线性因子。与之前的方法相比,机器学习算法凭借其出色的学习能力和灵活性,能够更好地处理非线性问题。在本研究工作中,利用基于遗传算法、爬山算法和模拟退火算法的优化神经网络来预测 FCG 率。通过对 2324-T39、7055-T7511 和 6013-T651 等不同航空铝合金进行测试,验证了所提出的技术。通过基于模拟退火的优化神经网络,对铝合金 6013-T651 的最小预测 MSE 为 1.0559 × 10 −9。此外,结果与实验过程中设想的数据非常吻合。
摘要:本研究重点设计一种爬墙机器人,用于桥梁、旧混凝土建筑、隧道和水坝等建筑结构的无损检测。机器人的主要目标是确定建筑结构上的表面裂缝。对于粘合机制,采用通用真空吸力机制,可爬过水平和垂直表面。图像处理用于分析使用相机捕获的图像。集成控制和相机固定模块的树莓派适用于系统的图像捕获和控制系统。图像应作为系列发送到计算机进行读取。图像处理算法应用于捕获的图像。应用图像预处理、分割、灰度转换、阈值和边缘检测等算法。使用不同的边缘检测算子,如 canny、sobel、roberts、prewitt 和 log 进行表面裂纹检测。使用图像处理算法估计裂纹参数,即分段裂纹的面积。并以像素值的形式获得输出,然后将其转换为相应的尺寸。关键词:攀爬机器人、气动机构、图像处理、裂纹检测。
Quezon City,菲律宾1101年,摘要 - 对小型,便携式电子设备的需求一直在增加,直到今天。紧凑的电子设备将减少半导体的大小,这将转化为进一步缩小其中的组件,例如小轮廓二极管(SOD)和小轮廓晶体管(SOT)。这项工作利用有限元法采用断裂力学方法来分析不同的几何参数对硅死亡诱导裂纹的J积分的影响。此外,对两种模量弹性模量的影响对硅死模的裂纹倾向的研究进行了研究。获得的J积分值通常显示出具有中型硅的峰值,其模具附着材料具有较高的弹性模量。J-积分值通常会随着厚度而降低,但发现在100毫米厚度约为100毫米的最小值。进一步减少厚度会导致J积分的增加。模拟的结果将有助于确定这些参数对包裹对模具裂纹风险的可靠性的影响,并可以用于指导现有包装设计的改进。关键字 - die crack,j-integral,小排出线晶体管
芯片裂纹失效机制的质量和可靠性问题需要在供应链的每个步骤中得到解决,从晶圆供应商、半导体制造、封装组装、一级制造商组装到最终客户应用。找到芯片裂纹的关键因素对于根本原因调查至关重要,从而可以实施准确的纠正措施。可以采用的各种分析方法有很多,从标准 FA 技术(主要是 SAM 和断口分析)到先进技术,如热莫尔分析或有限元模拟。应用级分析、问题解决和持续改进方法也是解决此类问题的关键成功因素:故障树分析和石川图将实现完整的流程评估,包括封装和芯片完整性、装配流程、表面贴装技术 (SMT) 流程以及最终客户应用的应力条件。本文首先介绍了不同的互补 FA 技术,然后介绍了三个案例研究,这些案例研究说明了根据故障时间确定此类模具裂纹原因的难度。© 2015 Elsevier Ltd. 保留所有权利。
金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域,区域 I 和 III 的斜率较陡,区域 II 的线性斜率适中,这通常称为巴黎制度。但是,文献中有许多例子表明区域 II 的斜率存在变化。一些研究人员假设区域 I 和 III 呈线性行为,并导致整个 FCGR 曲线的多线性描述。在本文中,我们将假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下均受幂律行为控制。为了适应多线性 FCGR 曲线的变化,在 FCGR 方程中引入了数学枢轴点,允许直接拟合裂纹长度与循环曲线以获得 FCGR。能够拟合区域 I 中裂纹的细小和长裂纹扩展曲线,证实了区域 I 裂纹扩展速率受幂律行为控制。FCGR 结果表明,细小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,无论是细小裂纹还是长裂纹。这导致过渡处 ΔK 明显偏移,并指出不均匀采样是细小裂纹阈值较低的原因。将精确的小裂纹扩展速率测量与长裂纹扩展速率测量相结合,从初始不连续尺寸计算疲劳寿命,这与光滑样品实验获得的疲劳寿命结果相对应。
摘要 加工技术的最新进展使得通过微观结构定制可以制造出具有优异疲劳性能的新型金属材料。鉴于这些有希望的发展,越来越需要在最先进的实验表征和基于物理的理论基础之间建立协同作用。因此,在进一步制定针对循环损伤的新设计指南之前,重新审视现有的预测文献是及时的要求。为此,本文概述了疲劳裂纹扩展机制的主要机械和分析理论。重点是根据基本原理对所提出的建模工作进行分类。在此过程中,根据最新的实验结果仔细检查了其贡献和局限性。目的是为当代工程师和研究人员提供一个视角。这种简洁而关键的叙述将从根本上帮助制定更先进的微观结构 - 损伤关系。最后添加了评论,概述了未来研究的有希望的途径。