修订的课程建议:计算机维修A+软件CNVT 1010,3个学分发起人:Kevin Crawford Rationale:将课程目标放入系统目录中描述:本课程涵盖了软件/操作系统组件的安装,配置和故障排除。提出了材料,以准备学生进行A+ OS技术检查。修订的课程建议:网络I CNVT 1810,3个学分发起人:凯文·克劳福德(Kevin Crawford)理性:将课程目标纳入系统目录描述:网络简介网络涵盖了Internet和其他计算机网络的体系结构,结构,功能和组件。学生对网络的运作方式以及如何构建简单的局部网络(LAN),对路由器和交换机执行基本配置以及实现Internet协议(IP)的基本了解。Revised Course Proposal: Networking II CNVT 1820, 3 credits Originator: Kevin Crawford RATIONALE: Putting the Course Objectives into the system CATALOG DESCRIPTION: Switching, Routing, and Wireless Essentials (SRWE) covers the architecture, components, and operations of routers and switches in small networks and introduces wireless local area networks (WLAN) and security concepts.学生学习如何使用安全性最佳实践来配置和故障排除路由器和开关以进行高级功能,并解决IPv4和IPv6网络中协议的常见问题。强调网络安全概念并引入网络虚拟化和自动化。修订的课程建议:网络III CNVT 1830,3个学分发起人:凯文·克劳福德(Kevin Crawford)的理由:将课程目标纳入系统目录描述:描述架构,组件,操作和安全性以扩展大型,复杂的复杂网络,包括广泛的区域网络(WAN)技术。学生将学习如何配置高级路由和切换协议;确定威胁并增强网络安全;实施IPv4访问控制列表(ACLS);配置
Krista Thongphanh批准:__________________________________,委员会主席金伯利·穆里根(Kimberly Mulligan)博士。 __________________________________,第二读者罗伯特·克劳福德(Robert Crawford)博士__________________________________,第三读者Gerhard Bauer ____________________________________
uio.no › matnat › ifi › timeplan › e... PDF 2000 年 2 月 15 日 — 2000 年 2 月 15 日其 IT 和业务流程能力正如 Manheim Interactive 软件开发总监 Steve Crawford 所解释的那样,
3 数字时代人工智能特别委员会,《数字时代人工智能草案报告》2020/2266/(INI) 第 7 段。 4 McKenzie Raub,《机器人、偏见和大数据:人工智能、算法偏见和招聘实践中的不同影响责任》(2018 年)71 Ark. L. Rev.,530。 5 Pedro Domingos,《主算法:对终极学习机器的追求将如何重塑我们的世界》(企鹅图书有限公司 2015 年)14。 6 Kate Crawford,《人工智能地图集:权力、政治和人工智能的全球成本》(耶鲁大学出版社 2021 年)8。 7 Kate Crawford,《人工智能的白人问题》纽约时报(2016 年 6 月 25 日)< https://www.nytimes.com/2016/06/26/opinion/sunday/artificial-intelligences- white-guy-problem.html > 于 2022 年 2 月 1 日访问。
另一个主要的偏见来源是人工智能最初用来帮助它了解世界的标签。凯特·克劳福德 (Kate Crawford) 是微软的人工智能研究员,也是纽约大学 AI Now 的创始人之一,该研究所专注于人工智能的社会影响。2019 年,克劳福德与艺术家特雷弗·佩格伦 (Trevor Paglen) 合作开展了一项名为“数据集考古学”的艺术项目。他们采用了最大、使用最广泛的图像数据集之一 ImageNet,并研究了其标记和构建的值。他们的工具名为 ImageNetRoulette,“经常返回厌恶女性、种族主义和残忍的标签”。这些标签现在已成为许多图像识别系统的嵌入部分,该项目有助于展示人工智能系统的系统性偏见如何成为我们世界中普遍存在的特征。
12。Clegg J.,Crawford E.,Spencer S.&Matthews D.(2021)在英格兰离开护理的年轻人的发展语言障碍:一项研究,研究年轻人的语言,读写能力和沟通能力,这些年轻人从护理过渡到独立性。国际环境研究与公共卫生杂志。18(8),4107。
作者的联系信息:Alexandra Sasha Luccioni,sasha.luccioni@hf.co,加拿大蒙特利尔的拥抱面;艾玛·斯特鲁贝尔(Emma Strubell),美国匹兹堡卡内基·梅隆大学(Carnegie Mellon University);凯特·克劳福德(Kate Crawford),微软研究;南加州大学,美国纽约。
委员会参与者在场:Joshua Arbaugh(WV),Sally Flowers(SK),H。DorotaInerorowicz(OISC)(OISC),Mary Koestner,Teresa Riegel(FL),Kristi McCccallum(Co-Chair/Co) Dancia Wu (OIISC), Dominka Condratko, (CO), Robin Johnson (MT), Angela Swinford (FDA), Michele Swarbrick, (MN) Advisors Present: Jenny Bailie (Nutricest/Ama), Matt Nichols (Neogen), Lars Reimmannn (EUROFINS),KEN RITER(P和NPAL),LEO SCHILLING(EUROFINS),BRIAN FITCHETT(JM SMUCKER)虚拟与会者:Budhika Galkaduwa(SC)(SC) (终身会员),南希·蒂克斯(终身会员),布伦达·斯诺德格拉斯(AFCO PTP),阿梅特拉·贝里(GA),丽贝卡·莫斯利(Rebecca Moseley)(AL),太极拳(NE),William Hoek(NY),安迪·克劳福德(Andy Crawford),安迪·克劳福德(Andy Crawford)国王),梅兰妮·蒂特利(CFIA)
基于单倍型的摘要统计数据 - 例如IHS(Voight等人2006),NSL(Ferrer-Admetlla等人 2014),XP-EHH(Sabeti等人。 2007)和XP-NSL(Szpiech等人 2021) - 在进化基因组学研究中司空见惯,以确定种群中的最新和持续的阳性选择(例如, Colonna等。 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021)。 当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。 这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。 这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2006),NSL(Ferrer-Admetlla等人2014),XP-EHH(Sabeti等人。 2007)和XP-NSL(Szpiech等人 2021) - 在进化基因组学研究中司空见惯,以确定种群中的最新和持续的阳性选择(例如, Colonna等。 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021)。 当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。 这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。 这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2014),XP-EHH(Sabeti等人。2007)和XP-NSL(Szpiech等人2021) - 在进化基因组学研究中司空见惯,以确定种群中的最新和持续的阳性选择(例如,Colonna等。2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021)。 当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。 这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。 这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2014,Zoledziewska等。2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021)。 当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。 这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。 这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2015,Ne´de´lec等。2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021)。 当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。 这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。 这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2016,Crawford等。2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021)。 当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。 这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。 这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2017,Meier等。2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021)。 当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。 这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。 这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2018,Lu等。2019,Zhang等。 2020,Salmo´n等。 2021)。 当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。 这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。 这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人 2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2019,Zhang等。2020,Salmo´n等。2021)。当适应性等位基因扫描一个人群时,它留下了长期高频单倍型和等位基因附近遗传多样性低的特征模式。这些统计数据旨在通过总结单倍型纯合性的衰减来捕获这些信号,这是一个距离被推定的区域(IHS和NSL)或两个种群(XP-EHH和XP-NSL)之间的距离。这些基于单倍型的统计数据非常有力地检测最近的阳性选择(Colonna等人2014,Zoledziewska等。 2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2014,Zoledziewska等。2015,Ne´de´lec等。 2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2015,Ne´de´lec等。2016,Crawford等。 2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2016,Crawford等。2017,Meier等。 2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2017,Meier等。2018,Lu等。 2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。 2021)。 此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2018,Lu等。2019,Zhang等。 2020,Salmo´n等。 2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。2019,Zhang等。2020,Salmo´n等。2021),并且两个人群版本甚至可以在很大的参数空间上进行成对的FST扫描(Szpiech等人。2021)。此外,基于单倍型的方法也已证明对背景选择是可靠的(Fagny等人。2014,Schrider 2020)。 然而,这些统计数据中的每一个都认为单倍型相是已知或据估计的。 作为非模型生物的基因组测序数据的产生正在变得常规(Ellegren 2014),有很多很大的机会来研究整个生命之树的最新适应性(例如, Campagna和Toews 2022)。 但是,这些生物/种群通常没有特征良好的人口历史或重组率2014,Schrider 2020)。然而,这些统计数据中的每一个都认为单倍型相是已知或据估计的。作为非模型生物的基因组测序数据的产生正在变得常规(Ellegren 2014),有很多很大的机会来研究整个生命之树的最新适应性(例如,Campagna和Toews 2022)。但是,这些生物/种群通常没有特征良好的人口历史或重组率