Camrose地区展览中心(CRE)是举办活动的绝佳设施,每年拥有350个活动日。涵盖了53,000英尺的室内展览和会议空间,43,000年的户外音乐会空间和12,000SF的农业活动空间,CRE是一种多功能的多功能综合体,用于农业,娱乐,教育和休闲,分布在103英亩的土地上。CRE设有几个室内和室外设施,例如Kinsmen Hall,Hirsch Hall,Elliot Hall和Main Arena。它还包括露天亭,该露天亭具有宽敞的铺装舞池和4,000平方米的封闭区域。此外,CRE提供了会议空间和谷仓B,这是一个专门用于农业活动的主要空间。5
摘要 顺式调控元件 (CRE) 是一小段 (~5 – 15 个碱基对) DNA,能够与转录因子结合并影响附近基因的表达。这些区域对于研究表型和基因型之间关系的任何人来说都非常有趣,因为这些序列通常决定基因的时空表达。事实上,已知基因型和表型之间的几种关联信号位于蛋白质编码区之外。因此,理解进化生物学的关键在于在当前和未来的基因组组装中对它们进行表征。在本综述中,我们介绍了一些 CRE 变异如何促进表型进化的近期例子,讨论了基因组非编码区域所经历的选择压力的证据,并考虑了几项关于植物可及染色质区域的研究以及它们能告诉我们有关 CRE 的什么信息。最后,我们讨论了当前测序技术的进展将如何提高我们对 CRE 变异的认识。
10月21日,星期一,上午9:30-上午10:30,面板1脱碳化:与Cre Cre portfolios重要的指标:纽约舞厅主持人:Cody R Glavey -Weiss:Nyserda,Nyserda,Albany,NY Panelists项目经理:Matthew Sheridan,P.E.说与客户相同的语言。作为纽约市和全国各地的商业房地产(CRE)所有者,致力于优先考虑其投资组合的脱碳化,这常常听到常见的限制 - “供应商不了解我的财产,或者对我和我的房客有重要的收益”。本小组会议将领先的纽约市CRE投资组合的关键决策者汇集在一起,讨论他们在评估新的供应商建议时考虑的制造或破坏指标,以及供应商喜欢说的话,这对选择没有影响。小组成员将潜入他们的决策过程,突出了不仅仅是成本和回报的因素。本届会议将探讨指标的样子:
Hutchinson – Gilford过程综合征(HGP)是一种罕见的疾病,是由雌蛋白的表达引起的,后代蛋白是一种突变蛋白,可加速衰老并沉淀死亡。 鉴于动脉粥样硬化并发症是后代死亡的主要原因,因此我们研究了在HGPSREV -CDH5 -CREERT2和HGPSREV -SM22α-CRE中是否可以预防孕激素诱导的动脉粥样硬化,而在内皮细胞(ECS)和Vascu -lars(vascu -lars)(vascu)(vascus)(vascus)sm22α-cre。 hgpsrev -cdh5 -creert2小鼠与Hgpsrev小鼠具有无处不在的后代蛋白表达,与hgpsrev -sm22α-cre鼠小鼠的改善雌激素表型相反。 研究动脉粥样硬化,我们通过过表达PCSK9增益 - 功能突变体来产生动脉o子小鼠模型。 而HGPSREV -CDH5 -CREERT2和HGPSREV小鼠产生了类似水平的过度动脉粥样硬化,HGPSREV -SM22α-CRE小鼠的斑块发育降低至野生 - 型水平。 我们的研究表明,VSMC中的后代抑制蛋白,但没有在EC中抑制,可防止术中的动脉粥样硬化加剧。Hutchinson – Gilford过程综合征(HGP)是一种罕见的疾病,是由雌蛋白的表达引起的,后代蛋白是一种突变蛋白,可加速衰老并沉淀死亡。鉴于动脉粥样硬化并发症是后代死亡的主要原因,因此我们研究了在HGPSREV -CDH5 -CREERT2和HGPSREV -SM22α-CRE中是否可以预防孕激素诱导的动脉粥样硬化,而在内皮细胞(ECS)和Vascu -lars(vascu -lars)(vascu)(vascus)(vascus)sm22α-cre。hgpsrev -cdh5 -creert2小鼠与Hgpsrev小鼠具有无处不在的后代蛋白表达,与hgpsrev -sm22α-cre鼠小鼠的改善雌激素表型相反。研究动脉粥样硬化,我们通过过表达PCSK9增益 - 功能突变体来产生动脉o子小鼠模型。而HGPSREV -CDH5 -CREERT2和HGPSREV小鼠产生了类似水平的过度动脉粥样硬化,HGPSREV -SM22α-CRE小鼠的斑块发育降低至野生 - 型水平。我们的研究表明,VSMC中的后代抑制蛋白,但没有在EC中抑制,可防止术中的动脉粥样硬化加剧。
不同细胞群体的位点特异性遗传和表观遗传靶向是分子神经科学的核心目标,对于理解基因调节机制至关重要,这些基因调节机制是基于复杂的表型和行为的基础。虽然最近的技术进步已经实现了对基因表达的前所未有的控制,但其中许多方法都集中在选定的模型生物上和/或需要针对不同应用的劳动密集型定制。群集定期插入短质体重复序列(基于CRISPR)的系统的简单性和模块化已改变了基因组编辑并扩展了基因调节工具箱。但是,几乎没有可用于神经元细胞选择性CRISPR调节的工具。我们设计,验证和优化的CRISPR激活(CRISPRA)和CRISPR干扰(CRISPRI)系统用于CRE重组酶依赖性基因调节。出乎意料的是,基于传统的双流传式开放阅读框(DIO)策略的CRISPRA系统即使没有CRE也会显示出漏水的靶基因诱导。因此,我们开发了一种含有内含子的CRE依赖性CRISPRA系统(SVI-DIO-DCAS9-VPR),该系统减轻了泄漏基因诱导,并在HEK293T细胞和大鼠原发性神经元培养物中的内源基因上的传统DIO系统表现优于传统的DIO系统。使用基因特异性CRISPR SGRNA,我们证明了SVI-DIO-DCAS9-VPR可以以CRE特异性方式激活许多大鼠或人类基因(GRM2,TENT5B,FOS,SSTR2和GADD45B)。为了说明该工具的多功能性,我们创建了一个平行的CRISPRI构建体,该构建体仅在CRE存在下仅在HEK293T细胞中成功抑制了荧光素酶报告器的表达。这些结果为跨不同模型系统的CRE依赖性CRISPR-DCAS9方法提供了强大的框架,并在与常见的CRE驱动线或通过病毒载体交付时实现了细胞特异性靶向。
顺式调节元件(CRE),例如启动子和增强子,是直接调节基因表达的相对较短的DNA序列。CRE的适应性,通过其调节基因表达的能力来衡量,高度取决于Nu-Cleotide序列,尤其是特定的基序被称为转录因子结合位点(TFBSS)。设计高素质CRE对于治疗和生物工程应用至关重要。当前的CRE设计方法受两个主要缺点的限制:(1)他们通常依靠迭代优化策略来修改现有序列并易于局部Optima,并且(2)他们缺乏序列优化的生物学先验知识的指导。在此过程中,我们通过提出一种生成方法来解决这些局限性,该方法杠杆化的增强学习(RL)以微调预先训练的自动回旋(AR)模型。我们的方法通过得出基于综合推理的奖励来模拟激活剂TFBS并去除阻遏物TFBS,从而结合了数据驱动的生物学先验,然后将其集成到RL过程中。我们在两个酵母媒体条件下的启动子设计任务和三种人类细胞类型的增强剂设计任务中评估了我们的方法,这表明了其产生高素质CRE的能力,同时保持序列多样性。该代码可在https://github.com/yangzhao1230/taco上找到。
顺式调节元件(CRE),例如启动子和增强子,是直接调节基因表达的相对较短的DNA序列。CRE的适应性,通过其调节基因表达的能力来衡量,高度取决于Nu-Cleotide序列,尤其是特定的基序被称为转录因子结合位点(TFBSS)。设计高素质CRE对于治疗和生物工程应用至关重要。当前的CRE设计方法受两个主要缺点的限制:(1)他们通常依靠迭代优化策略来修改现有序列并易于局部Optima,并且(2)他们缺乏序列优化的生物学先验知识的指导。在此过程中,我们通过提出一种生成方法来解决这些局限性,该方法杠杆化的增强学习(RL)以微调预先训练的自动回旋(AR)模型。我们的方法通过得出基于综合推理的奖励来模拟激活剂TFBS并去除阻遏物TFBS,从而结合了数据驱动的生物学先验,然后将其集成到RL过程中。我们在两个酵母媒体条件下的启动子设计任务和三种人类细胞类型的增强剂设计任务中评估了我们的方法,这表明了其产生高素质CRE的能力,同时保持序列多样性。该代码可在https://github.com/yangzhao1230/taco上找到。
图1:RBP4 CRE -HM3DQ和RBP4 CRE -HM4DI DREADD激活A,B,兴奋性(蓝色)和抑制性(绿色)DREADD受体和实验程序的电生理验证。补丁钳电生理记录是连续进行的。在恒定的ACSF应用下,在5和10分钟下进行了两次基线记录,然后进行CNO给药,并在申请后2、5和10分钟进行三个记录,然后进行冲洗步骤。在最后一步中,获得了不同时间点的控制记录。c,RBP4 CRE -HM3DQ膜电压响应的代表性示例。d,CNO给药前后的输入输出曲线,以响应当前应用的增加。灰色代表,CNO给药后的蓝色痕迹。在RBP4 CRE -HM3DQ脑切片中CNO给药之前和之后,记录的神经元的膜电阻。基线和CNO管理之间没有显着差异(左)。CNO给药前后记录的神经元的静止膜电位。在CNO给药后,膜被概念性去极化(右)。n = 7只小鼠,单向方差分析通过邓内特的多重比较测试。e,RBP4 CRE -HM4DI膜电压响应的代表性示例。
在本课程中,所有生物学概念都被教导为未来几年中更多原始课程的基础。本课程的标题包括以下主题:生物生物的开始和细胞基础,细胞的细胞构建块,细胞生物学,细胞膜的结构,细胞细胞器的功能,能量代谢,细胞信息流动和细胞信号的基础。在本课程的实验室应用中,引入了实验室中使用的设备,工具和设备。显微镜,并详细说明了其使用。细胞结构和细胞器。洋葱膜制剂准备检查洋葱膜细胞的浆液性 - 滴性溶解和细胞分裂阶段。有机分子的综述;用水和卢戈尔分离器的应用对土豆,豆类和小麦植物进行显微镜检查。叶片切片用于检查叶片中的斯托马斯。准备检查从准备好的制剂中检查肾脏组织和血细胞,并检查了单细胞细菌的显微镜。
“CRE.Converge 是一个很好的机会,让我们在日常运营之外深入了解 CRE 行业,并从市场专业人士那里了解更大的趋势。该活动营造了一个与拥有同样热情的人建立联系的环境,并提供了许多自我教育和通过不同视角看待 CRE 领域的方式。”