解决任何优化问题需要两个步骤 - 一个,制定问题,两个步骤,为配方提供最佳解决方案。第一步构成理解问题并用数学术语提出问题。此数学公式可以通过多种方式完成,例如线性编程(LP),混合整数线性编程(MILP),非线性和二次。基于制定问题的便利以及算法,技术和工具的可用性,选择了一种公式方法。提出问题后,优化问题的第二步是获得最佳成本的解决方案。随着问题大小的增加,无法通过分析解决问题,而理论上蛮力方法可能会呈指数更长的时间。因此,使用数值方法来为大型优化问题提供近似的解决方案。
为了让船员股份持有人(“船员股东”)根据《安排》获得其应得的对价,已登记船员股东必须将代表其所持有船员股份的证书或直接登记声明(“DRS”)通知书(如适用)连同有效填写并正式签署的转让函以及《安排》条款和转让函所要求的所有其他文件,交存至奥德赛信托公司(“托管人”),地址见转让函背面。未将有效填写并正式签署的转让函连同代表其船员股份的证书或 DRS 通知书和其他相关文件一起交存的已登记船员股东,在交存此类材料之前,将无法获得根据《安排》应得的对价。转让函已事先发送给已登记船员股东。受益船员股东(即船员股份由中介/经纪人持有的船员股东)将通过其中介/经纪人获得根据该安排应得的对价。所有问题(包括要求另一封转送函的任何请求)均应直接联系存管人,联系电话为 1-888-290-1175(免费电话)或 1-587-885-0960,或发送电子邮件至 corp.actions@odysseytrust.com。
现代喷气式飞机驾驶舱自动化程度的提高旨在降低飞行中失去控制 (LOC-I) 等不良飞机状态 (UAS) 情况的风险。尽管全球范围内 LOC-I 仅占所有分析事故的 9%,但国际航空运输协会报告称,2017 年所有事故死亡人数中 58% 是由 LOC-I 造成的。本文的重点是回答威胁和错误管理以及机组资源管理 (CRM) 技术在面临 LOC-I 威胁时是否是一种有效的风险管理工具。分析了三份 LOC-I 最终飞机事故报告,以了解这些飞行期间的人为因素 (HF) 结构。HF 领域的方法,例如通用错误建模系统 (GEMS) 和基于技能、规则和知识 (SRK) 的错误方法,为识别潜在发现提供了宝贵的见解。对飞行路径管理中的认知结构进行整体研究有助于在日常操作中可视化 LOC-I 期间的潜在条件和认知要求高的任务。考虑到本文考虑的案例数量有限,应将其视为 LOC-I 事故分析的概述。它表明,领导力和团队合作作为 CRM 培训的重要方面,可以作为缓解 HF 问题和 LOC-I 风险的关键策略。
1.如果另一个菜单/列表处于活动状态,请按 DCP 上的 RADIO 按钮显示 MFD 收音机菜单。2.如果需要,请按 1/2 按钮交替选择 1 侧收音机和 2 侧收音机。3.转动 DCP 上的 MENU 旋钮,将收音机菜单上的选择框移动到收音机(COM、NAV、ATC/TCAS 等)要调谐的频率或频道。4.转动 DCP 上的 TUNE 旋钮,调谐所需的频率或频道。- 较大的(外部旋钮)调整小数点左侧的数字。- 较小的(内部旋钮)调整小数点右侧的数字。5.要激活新频率/频道: - 按下调谐旋钮中央的传输按钮。6.要更改模式、调整静噪和收音机的其他非调谐功能: - 转动 MENU 旋钮将选择框移动到适当的收音机(COM1、NAV2、ATC/TCAS 等)- 按下 DCP 上的 RADIO 按钮选择子菜单。- 转动 MENU 旋钮将选择框移动到子菜单上。- 转动 DATA 旋钮更改模式或选择选项(例如调谐模式、静噪级别、交通模式等)- 按下 PUSH SELECT 按钮浏览可用选项。(PUSH SELECT 按钮在选择选项时的作用与 DATA 旋钮相同)- 要退出子菜单,请按下 RADIO 按钮。显示屏返回到广播菜单。
飞机通用、应急设备、门、窗......................................................................................1 空气系统......................................................................................................2 防冰、防雨......................................................................................................3 自动飞行......................................................................................................4 通信......................................................................................................5 电气......................................................................................................6 发动机、APU.............................................................................................7 防火.............................................................................................................8 飞行控制......................................................................................................9 飞行仪表、显示器......................................................................................10 飞行管理、导航.............................................................................................11 燃料.............................................................................................................12 液压系统.............................................................................................................13 起落架.............................................................................................................14 警告系统.............................................................................................................15
本论文旨在更好地了解空乘人员在工作中面临的两种职业健康风险,即压力和疲劳。众所周知,空乘的工作压力很大,工作时间不断变化,一天的节奏不平衡,情况瞬息万变,需要机组人员快速适应。这些条件使这份工作充满挑战,而机组人员的表现对乘客的安全和保障都至关重要。本研究的重点是空乘人员在职业生涯的早期如何体验压力和疲劳,以及他们发现哪些方法可以有效保持生活平衡。目的是帮助新空乘人员更快、更轻松地适应他们的新职业。此外,航空业可以在组织培训实体时利用这项研究的结果。这项研究于 2019 年秋季作为一项定性研究实施,采访了五名职业生涯初期的空乘人员。半结构化主题访谈被用作数据收集的方法。后来,借助录音采访的转录对数据进行了分析。由于受访者人数有限,数据无法进行统计概括。结果表明,尽管新空乘人员的生活方式发生了变化,但他们对职业的适应相当好。空乘人员几乎没有感受到任何压力和疲劳。然而,在 s 方面存在问题
1 背景 对飞机事故原因的调查显示,人为失误是 60% 至 80% 的飞机事故和事件的促成因素。长期研究表明,这些事件具有共同的特征。机组人员遇到的许多问题与多人环境中的操作技术方面关系不大。相反,问题与决策不当、沟通不畅、领导不力以及任务或资源管理不善有关。机组人员培训计划历来几乎只关注飞行的技术方面和个人表现;它们没有有效解决对安全飞行同样至关重要的机组管理问题。行业和监管机构已经达成共识,培训计划应强调影响机组协调和机组资源管理的因素。航空界代表的协调努力为 CRM 培训提出了宝贵的建议。
现代喷气式飞机驾驶舱自动化程度的提高旨在降低飞行中失去控制 (LOC-I) 等不良飞机状态 (UAS) 情况的风险。尽管 LOC-I 在全球范围内仅占所有分析事故的 9%,但国际航空运输协会 (IATA) 报告称,2017 年所有事故死亡人数中 58% 是由 LOC-I 造成的。本文的重点是回答威胁和错误管理以及机组资源管理 (CRM) 技术在面对 LOC-I 威胁时是否是一种有效的风险管理工具。分析了三份 LOC-I 最终飞机事故报告,以了解这些飞行期间的人为因素 (HF) 的结构。来自 HF 领域的方法,例如通用错误建模系统 (GEMS) 和基于技能、规则和知识 (SRK) 的错误方法,为识别潜在发现提供了宝贵的见解。对飞行路径管理中的认知结构进行全面调查有助于直观地了解日常操作中 LOC-I 期间的潜在情况和认知要求高的任务。考虑到本文考虑的案例数量有限,应将其视为 LOC-I 事故分析的概述。这表明,领导力和团队合作作为 CRM 培训的重要方面,可以作为缓解 HF 问题和 LOC-I 风险的关键策略。
1.0 简介 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.1 目的 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.2 概述 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.3 范围、优先级和限制 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。1.3.1 范围 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>........1.4 如何使用文档 1 – 1 ...< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...1.5 如何使用标准关系数据库 1 – 1 .。。。。。。。。 < /div>....1.6 定义和缩写 1 – 1 .....。。。。。。。。。。。。。。。。。。。。。。。。..1.6.1 人为因素/人体工程学 1 – 1 ......... div>................. div>.......1.6.2 人体工程学 1 – 2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.3 人-系统集成 1 – 2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.4 人机系统 1 – 2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.5 人机界面 1 – 2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.6 人机界面 1 – 3 .。。。。。。。。。。。。。。。。。。。。。。...........1.6.7 界面语言 1 – 3 ............。。。。。。。。。。。。。。。。。。。。。。。。.....1.6.8 宜居性 1 – 3 ...............。。。。。。。。。。。。。。。。。。。。。。。。...........1.6.9 人体测量学 1 – 3 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.10 生物力学 1 – 3 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.11 生理学 1 – 3。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.12 心理学 1 – 4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.13 社会因素 1 – 4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.14 职业健康(工业医学) 1 – 4。。。。。。。。。。.........1.6.15 环境 1 – 4 .............。。。。。。。。。。。。。。。。。。。。。。。。.............2.0 适用文件 2 – 1 ..........。。。。。。。。。。。。。。。。。。。。。。。。.....2.1 参考文件 2 – 4 .....................................3.0 人体测量学和生物力学 3 – 1 .。。。。。。。。。。。。。。。。。。。。。。。。。3.1 简介 3 – 1 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>....3.2 一般人体测量学和生物力学相关设计考虑 3 – 1 . < /div>.........。。。。。。。。。。。。。。。。。。。。。。。。.....3.3 普通体质测量学和生物力学相关设计数据 3 – 1 ...... < /div>..........。。。。。。。。。。。。。。。。。。。。。。。。...... div>......3.3.1 身体尺寸3 – 1 。。。。。。。。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.3.1.1 简介 3 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>3.3.1.2 机身尺寸设计考虑因素 3 – 1 ...... div>................. div>......3.3.1.3 主体尺寸数据设计要求 3 – 1 ...........。。。。。。。。。。。。。。3.3.2 关节运动 3 – 13 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.3.2.1 简介 3 – 13 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...3.3.2.2 关节运动设计考虑因素 3 – 13 ........ div>.................3.3.2.3关节运动数据设计要求 3 – 14 ...... < /div>..............3.3.2.3.1 单关节的关节运动数据设计要求 3 – 14 .3.3.2.3.2 两个关节的关节运动数据 设计要求 3 – 17 ..3.3.3 REACH 3 – 18 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.3.3.1 简介 3 – 18 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..............3.3.3.2 REACH 设计考虑因素 3 – 18 .........。。。。。。。。。。。。。。。。。。。。。。。3.3.3.3 REACH数据设计要求 3 – 18 ....................。。。。。