摘要我们提出了一种大型语言模型(LLM)的ChatScene-利用LLM的能力来为自动驾驶汽车的安全至关重要方案。给定的非结构化语言指令,代理首先使用LLMS生成文本描述的流量方案。这些SCE-NARIO描述随后被分解为几个子描述,以获取指定的细节,例如行为和车辆的位置。代理然后将文本描述的子筛选性转换为特定于域的语言,然后在模拟器中生成用于预测和控制的实际代码,从而促进了Carla Simulation Envimonment中的不同和复杂场景的创建。我们代理的关键部分是一个全面的知识检索组件,它通过训练包含情景描述和代码对的知识数据库来有效地将特定的文本描述转化为相应的特定领域代码段。广泛的实验结果强调了Chatscene在提高自动驾驶汽车安全性方面的功效。对于Intance,ChatScene产生的方案显示,与最先进的基线相比,在针对不同的基于强化的基于学习的自我车辆进行测试时,碰撞率增加了15%。此外,我们表明,通过使用我们生成的安全 - 关键方案来微调不同的基于RL的自主驾驶模型,它们可以降低碰撞率9%,超过Cur-Current Sota方法。代码可在https://github.com/javyduck/chatscene上找到。ChatScene有效地弥合了交通情况的文本描述与实际CARLA模拟之间的差距,从而提供了一种统一的方式,以方便地生成安全至关重要的方案,以进行安全测试和改进AVS。
1。EPA已开始根据《基础设施投资和就业法》(IIJA)授权的工作,以开发收集要回收和自愿电池标签指南的电池的最佳实践。国会分别向该机构分配了1000万美元和1500万美元,以在2026年9月30日之前完成这些任务。2。EPA计划提出新的规则,以改善太阳能电池板和锂电池的管理和回收利用。3。DOE和EPA正在开发一个工作组,以检查框架,以确定延长的生产者责任,以解决电池回收目标,强制性回收,产品设计,收集模型,收集材料的运输以及相关法规。(BIL 40207(f)(5))。4。与DOE一起,EPA将继续共同领导美国参与国际标准的技术发展和实施,包括由负责任采矿保证计划(IRMA)和国际标准化组织(ISO)开发的。EPA的国际事务办公室将继续参与机构间努力,以制定和实施USG战略,通过美国在多边福特和双边协议中的领导才能建立对强大关键矿物ESG标准的国际连贯性,并为关键合作伙伴在强大的ESG标准实施和治理方面开展能力建设努力。5。6。站点。7。EPA将与其他联邦机构一起参加正在进行的机构间允许理事会(例如关键矿产)允许机构间工作组的理事会,该机构建立了联邦环境审查,并允许关键矿产生产和加工项目。EPA的土地和紧急事务管理办公室以及研究与开发工作办公室协作,以评估,证明或测试环境监测和修复技术的性能,这些技术可以从传统硬岩矿场或金属加工(例如,冶炼,精炼等)中识别和回收关键的矿物EPA的研发办公室通过可持续和健康的国家研究计划,正在对技术和方法进行现场表征和补救研究,以进行恢复,补救和重复使用受污染地点的关键矿物质。
包括 IL-25、IL-33 和胸腺基质淋巴细胞生成素 (TSLP) 在内的警报素细胞因子可作为危险信号触发宿主免疫,以应对寄生虫感染等致病因素引起的组织损伤。寄生虫病也为研究其功能和机制提供了极好的背景。许多研究表明,非免疫细胞(如上皮细胞和基质细胞)释放的警报素细胞因子会诱导宿主启动 2 型免疫,从而驱除寄生虫,但也会导致宿主病理,如组织损伤和纤维化。相比之下,来自免疫细胞(如树突状细胞)的警报素细胞因子(尤其是 IL-33)可能会引发免疫抑制环境,从而促进宿主对寄生虫的耐受性。此外,据报道,警报素细胞因子在寄生虫感染中的作用取决于寄生虫种类、警报素细胞因子的细胞来源和免疫微环境,所有这些都与寄生部位或器官有关。本叙述性综述旨在提供有关警报素细胞因子在涉及不同器官(包括肠、肺、肝和脑)的寄生虫感染中的关键和多样化作用的信息。
简介我是Magine,您是美国水电坝的值班经理,该水力发电为美国消费者提供能源。主控制室中的一个监视器记录了故障,随后的错误消息表明,关键设备的运行接近其最大阈值,这可能会导致灾难性的控制损失并导致破坏性故障。控制室监视器上的更多错误读数可能会读取,但是您已经排练的应急培训事件不会解决这些类型的问题。您确定无法解决问题。应急响应方案之一是联系网络安全团队以评估问题。网络安全团队在网络监控和控制电厂系统上进行了诊断测试。在到达网络安全团队所需的时间里,对电厂系统进行数字扫描,并在控制室中向您报告,发生了灾难性的事件。司法部调查后来确定具有业余网络技能的非国家演员使用AI开发了恶意软件,这导致了
摘要 - 基于测量的量子计算(MBQC)是一种强大的技术,依赖于多数纠缠群集状态。要实现一组通用的量子门,因此,MBQC中的任何量子算法,我们都需要按适当的顺序测量群集状态矩阵,然后根据测量结果的进料进行最终校正。在光子量子架构中,Gottesman-Kitaev-Preskill(GKP)Bosonic Continule-Rible-变量(CV)编码是MBQC的绝佳候选者。GKP量子位允许轻松应用纠缠CZ门,用于使用梁拆分器生成资源群集状态。但是,准备高质量,现实,有限的GKP量子量可能是实验中的挑战。因此,可以合理地期望基于GKP的MBQC在群集状态下仅包含少数“良好”质量GKP量子台的实现。相比之下,其他量子位是弱挤压的GKP Qubits,甚至只是挤压真空状态。在本文中,我们分析了一组通用的简历门的性能,当使用不同质量(良好和不良)的GKP量子和挤压真空状态的混合在一起来创建群集状态。通过比较性能,我们确定了群集状态中每个门的关键量子,以实现其MBQC。我们的方法涉及将门的输出与相应的预期输出进行比较。我们介绍了不同栅极实现的逻辑错误率,这是GKP挤压的函数,用于使用Xanadu的草莓田Python库来模拟和确定。索引项 - 基于测量的量子计算,量子连续变量,Gottesman-Kitaev-Preskill Qubits
作者要感谢项目指导委员会的成员,即夏洛特·斯坦珀(EMR Group),帕特里克·巴雷特(Patrick Barrett),帕特里克·巴雷特(Patrick Barrett)(农业,食品和海军陆战队),玛丽·史密斯(CSO),肖恩·科尔根(欧洲环境局),保罗·巴特勒(Enterprise Ireland Ireland)(Enterprise Ireland)和Kevin Lydon(Epa)。我们还感谢EPA研究项目经理Dorothy Stewart和Oonagh Monahan,以及其他顾问的投入:南部地区废物管理办公室的Pauline McDonogh和Ursula Ahern,爱尔兰绿色建筑委员会的Rachel Loughrey和Circuléire的Geraldine Brennan。
重症监护社会仍然不是现代的,而且建议仍然没有很多建议。支持的信息不足。癌症的患者中目前,没有建议仅在筛选中使用哪些工具?患者进入ICU如果使用任何工具来预测由于各方面的多样性,例如癌症,血液学或实体瘤,类型的癌症疾病治疗的选择,必须将必须调节到ICU的指标尚未得出结论。在法国有一项医生的研究。通过ICU医生的判断,这组患者的工具发现将进入ICU的患者将拥有症状太严重了(“太病了”)30天和180天的生存率为26%,而在某些医生中则为17%。进入ICU的患者的症状太好了(“太好”时的死亡率为21.3%(由于频繁ICU的延迟)尽管这组患者的死亡率仍然很高,选择进入ICU的患者越有用,但建议文献越重要地进入ICU中的ICU。危机患者如表2 div>
研究药物从给药部位移动到药理作用部位并从体内消除的过程称为“药代动力学”。影响药物在体内移动(动力学)和命运的因素有:(1)从剂型中释放;(2)从给药部位吸收进入血液;(3)分布到身体各个部位,包括作用部位;(4)通过代谢或排泄原形药物从体内消除的速率。这些过程通常用首字母缩略词 ADME 来表示:吸收、分布、代谢和排泄。药物的 ADME 参数用各种术语来描述,例如 Cmax(血清中药物的最大浓度);Tmax(达到最大药物浓度的时间)
纳米技术的进展激发了对小型样品的超导性的研究,以及对它们超导状态的样品几何形状影响的研究。与散装超导体相比,包含大小的固定性会导致性质变化。众所周知,在I型体积超导体中,磁场会抑制超导性。然而,在小样品中,磁场的影响降低,阈值字段大大高于批量临界场。开发了I型超导球形包含的临界磁场计算方法。计算了针对边界条件的不同类型的临界场对纳入半径的依赖性。所提出的方法具有以任何理想的精度来确定关键场的价值的可能性。
