©编辑(如果适用)和作者,根据Springer Nature Singapore Pte Ltd.2024的独家许可。这项工作将获得版权。所有权利都是由出版商唯一的,仅由材料的全部或一部分授权的,尤其是翻译,重新使用,插图,朗诵,广播,在微胶片上或以任何其他物理方式复制,以任何其他物理方式复制,以及以任何其他物理方式复制,以及传输或检索,传输和检索,电子适应性,计算机软件,或通过类似的方法,或者是类似的方法,或者现在是相似的方法,或者现在是这些方法。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有具体陈述的情况下,这种名称也不意味着免于相关的保护法律和法规,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构隶属关系中的管辖权索赔方面保持中立。
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
上皮是保护我们身体免受环境挑战的基本障碍。这些挑战会导致细胞损伤(即凋亡),导致屏障完整性受到损害。上皮确保通过凋亡挤压保持屏障完整性。在凋亡挤出过程中,凋亡细胞被其相邻细胞挤出。此过程涉及细胞 - 细胞连接的动态重塑。我们的实验室最近发现,如果挤出失败,则保留凋亡细胞的相邻细胞募集中性粒细胞。我的项目旨在了解紧密连接的作用及其在上皮凋亡反应中的调节。紧密连接是副细胞通透性的原因。此功能可以限制潜在微生物在环境中的进入。因此,如果凋亡挤压失败并且凋亡细胞保留,则紧密连接的屏障调节功能将特别重要。
字节)。•LUSTER依靠旧的SUNRPC实现来进行密钥缓存管理(GSS)。•NFS过去存在相同的问题,最终切换到全新的实现(GSSPROXY)。•LUSTER是重复使用已经存在的Identity upcall缓存,但这需要大量适应性。
在(i)(i)延迟和废弃的生成项目的案例研究中可以找到的一代市场,包括绅士正在开发的项目; (ii)新西兰新一代供应的程度滞后; (iii)自部分私密化以来,实际批发和零售电价的稳定上涨,以至于现在有几个长期建立的新西兰行业的生存能力。•正如其他人指出的那样,EA当前正在检查,这是
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
密码学长期以来一直是确保通信和保护隐私的工具。但是,其作用超出了技术实施,以涵盖重要的政治和道德方面。由埃里克·休斯(Eric Hughes)于1993年撰写的Cypherpunk宣言[7],强调了加密和拥护者的继承性政治本质,以此作为确保隐私和个人自由的一种手段。同样,菲利普·罗加威(Phillip Rogaway)的[10]工作强调了密码学家的道德责任,尤其是在大规模监视和社会影响的背景下。从根本上讲,密码学可以看作是“武装”群众保护自己的群众的一种手段。1993年的宣言和罗加威的作品强调了两个要点:不信任政府和保护集体数据。这种观点在戴维·乔姆(David Chaum)的思想中得到了回应,他提出了一个依靠强大加密来保护隐私的交易模型。尽管这些想法首次阐明了40多年,但保护社会免受信息滥用的梦想仍然很遥远。Chaum警告:
开放式成像研究(OASIS)是一个旨在使大脑的磁共振成像(MRI)数据集的大脑数据集,可自由使用科学界。通过编译和自由分发MRI数据集,我们希望促进基本和临床神经科学中的未来发现。具体来说,OASIS项目旨在扮演许多角色。首先,绿洲图像和相关措施是持续科学探索的数据集。从整个成人寿命中从有或没有痴呆症的400多个个人获得的一组图像开始,选择了绿洲数据集,以鼓励对高兴趣主题进行研究,并提供对个别实验室难以获取的数据。第二,OASIS数据是研究人员创建和推动分析技术的目标。由于图像是从多个年龄和健康状况的受试者中获取的,因此绿洲数据可用于测试人类大脑各种景观各个范围内技术的鲁棒性和有效性。第三,绿洲数据可以用作相似分析技术的基准目标。标准图像证明了证明和对比方法的共同参考点。通过仔细筛选
同时,目标的 AR 轮廓符号将基于 UGV 车载视觉传感器的点云,使用 AI 算法合成 AR 数据。AI 还可以执行以下功能:警告倾覆可能性、确定安全路径、检测突然出现的阻碍移动的威胁、标记需要特别注意的区域的视觉警告、分析土壤的高光谱图像以识别其表面的变化(这是简易爆炸装置或地雷的人工伪装的标志)、在自然景观背景下识别伪装。所有此类识别结果都将以 AR 符号的形式呈现。这种合成的 AR 符号可以在没有视频流的情况下发送给 MUM-T 内的指挥所操作员或其他车辆,以最大限度地减少流量,或者与预加载的 AR 符号结合使用以合并到完整视频流中。在这种情况下,有必要解决将车载 AR 数据生成工具与 UGV 架构集成的问题,并在它们与 BMS 的连接集中化程度方面找到一个折衷方案。在 MUM-T 内部这也非常重要。
