医院感染和抗菌素耐药性(AMR)在全球范围内作为强大的医疗挑战。以实验室测试为指导,要解决这些问题,各种感染控制方案和个性化治疗策略,旨在检测血流感染(BSI)并评估AMR的潜力。在这项研究中,我们基于多目标符号回归(MOSR)引入了一种机器学习(ML)方法,这是一种进化方法,以一种以多目标的方式创建ML模型的形式,以克服标准单目标方法的限制。此方法利用入院后容易获得的临床数据,目的是预测BSI和AMR的存在。我们通过使用自然不平衡的现实世界数据和数据通过过度采样技术来进行比较,进一步评估了其性能。我们的发现表明,传统的ML模型在所有培训方案中均表现出低于标准的表现。相比之下,专门配置的MOSR也可以通过优化F1分数来最大程度地减少假否定因素,胜过其他ML算法,并始终如一地提供可靠的结果,而不论训练集平衡都以F1分数为单位。22和28比其他任何其他选择高。28。这项研究意味着在增强抗臭虫管理(AMS)策略方面的前进道路。值得注意的是,MOSR方法可以很容易地大规模实施,提供了一种新的ML工具,以找到受到有限数据可用性影响的这些关键医疗保健问题的解决方案。
全部,甚至大多数患者。设计一项随机对照试验以解决最相关的临床问题,在这些情况下是具有挑战性的。将足够数量的患者招募到常规的多ARM随机试验将非常困难,因为许多可用的患者因对一种或多种治疗方案的矛盾指示而被排除在外,并且任何设计试验的人指定的“指定标准护理”方案都可能被认为是标准的,甚至不受其他研究人员的接受。当正在考虑多种方案并且存在临床不确定性时,两臂试验将无法解决主要重要性的研究问题,并且可能仍然很难招募足够的患者。例如,用于治疗多药抗性感染的治疗方案存在很大的临床不确定性,或者具有相当比例的疾病发作的那些疾病的感染,预计会导致耐药性耐药性,从而迫切需要进行随机试验,以提供可用的治疗方案的比较。在碳青霉烯耐药性细菌感染的区域中,治疗选择包括高剂量碳青霉烯,较旧的,较老的有毒药物,较新的药物和药物组合,并且在哪些方案中无需使用哪些方案。1-5招募患者与比较这些方案的多臂试验是有问题的,因为许多耐碳青霉烯感染的患者具有一种或多种障碍。6引起疾病的原因包括感染生物体或患者的病史/潜在疾病,过敏或肾功能受损等病史的抗臭虫敏感性。这些问题使得甚至很难找到可以随机分组大量患者的两个特定方案,这意味着很少进行随机试验来定义最佳治疗。
摘要:手术部位感染(SSI)在术后手术过程中经常发生,并且经常用口服抗生素治疗,这可能会引起某些副作用。可以通过将抗菌/抗炎药封装在手术缝合材料中,从而避免这种感染,从而使它们可以在伤口闭合期间更有效地在作用部位作用,从而避免术后细菌感染并扩散。这项工作旨在开发新型的基于生物的抗感染纤维的纱线作为预防手术部位感染的新型缝合材料。为此,使用特殊设计的纱线收集器基于基于飞行的相互缠绕的微纤维(1.95±0.22 µm)的纱线进行原位制造。电纺纱缝合线(直径为300–500 µm)由聚(3-羟基丁酸-CO-CO-3-羟基乙烯酸)制成,具有不同的3HV单元,并包含环氧氟化物(CPX)羟化力(CPX),作为抗虫的抗腐烂药物活性药物(API)。然后通过扫描电子显微镜,傅立叶变换红外光谱,广角X射线散射,差量扫描量热法和体外药物释放来分析纱线。还根据抗菌和机械性能分析了纱线。材料表征表明,不同的聚合物分子结构影响了已达到的聚合物结晶度,该聚合物结晶度与不同的药物洗脱谱相关。此外,这些材料表现出PHBV的固有僵硬行为,API进一步增强了PHBV。最后,所有纱线缝合物呈现出5天的时间释放,均与革兰氏阳性和革兰氏阴性致病细菌相关。结果在这项研究中突出了开发的抗菌电纺纱的潜力,作为预防手术感染的潜在创新缝合材料。
假单胞菌 KT2440 是一种强大的芳香分解代谢细菌,已被广泛改造用于将生物基和废物基原料转化为目标产品。为了对假单胞菌 KT2440 进行工业化驯化,之前已经进行了合理的基因组减少,从而产生了假单胞菌菌株 EM42,该菌株表现出可能对生产菌株有利的特征。在这里,我们比较了假单胞菌 KT2440 和 EM42 衍生菌株从芳香族化合物对香豆酸和在单独的菌株中从葡萄糖生产顺式、顺式-粘康酸的情况。令我们惊讶的是,EM42 衍生菌株在从任何一种底物生产粘康酸方面的表现并不优于 KT2440 衍生菌株。在生物反应器培养中,KT2440 和 EM42 衍生菌株分别以 45 g/L 和 37 g/L 的滴度从对香豆酸产生粘康酸,并以 20 g/L 和 13 g/L 的滴度从葡萄糖产生粘康酸。为了进一步了解亲本菌株之间的差异,我们分析了 KT2440 和 EM42 在芳香族化合物作为唯一碳源和能源时的生长情况。总体而言,EM42 菌株的生长速度比 KT2440 菌株低,但生长滞后时间更短。我们还观察到,与 KT2440 衍生菌株相比,EM42 衍生菌株在葡萄糖上的生长速度更高,但仅限于测试的最低葡萄糖浓度。转录组学显示,EM42 中的基因组减少对转录水平具有整体影响,并表明从葡萄糖产生粘康酸的 EM42 衍生菌株在响应葡萄糖浓度变化时表现出基因表达调节降低。总体而言,我们的研究结果表明,有必要进行进一步研究来了解基因组减少对微生物代谢和生理的影响,特别是当用于生产菌株时。
简介:随着威胁人类健康的多药耐药细菌的出现,越来越多地探索了自然环境的新型抗菌素化合物。tasik cermin是一个完全被喀斯特塔和山丘所覆盖的湖泊,缺乏水的流入或流出,使其成为一种贫营养环境,营养有限。微生物之间的竞争增加会导致产生抗菌化合物,从而抑制其竞争者的生长。因此,这项研究的目的是评估来自tasik cermin的细菌分离株的抗菌活性,并确定最耐药的分离株。方法:针对五种测试细菌测试了分离株:S型金黄色葡萄球菌,枯草芽孢杆菌,肺炎链球菌,大肠杆菌和proteus fulgaris通过临时筛查,通过垂直筛查,次要筛选,次要筛选,次要筛查,次要筛查,然后是次要的,然后通过麦克比和MBC和抗抗性识别cocteria识别了colocileia。结果:结果表明,只有一个分离株(分离株TC1A)能够显示出针对P. p. p. p. p. p. p. p. p. p. p. p. niae的潜在抗菌活性。通过通过琼脂井扩散法进行二次筛选进一步测试,并在P. p. p. p. p. p. p. p. fulgaris(14.97±0.05),大肠杆菌(9.23±0.25)和肺炎链球菌(14.93±0.12)上观察到了抑制区。通过单向方差分析和Tukey测试方法的统计分析方法表明,与肺炎链球菌和肺炎链球菌相比,大肠杆菌的抑制区显着差异。分子鉴定表明,分离物TC1A被鉴定为Achromobacter sp。具有97.68%的相似性百分比。结论:这一发现表明,来自未探索区域的细菌分离物具有产生新型抗菌化合物的潜力。马来西亚医学与健康科学杂志(2023)19(SUPP18)36-45。 doi:10.47836/mjmhs19.s18.6马来西亚医学与健康科学杂志(2023)19(SUPP18)36-45。 doi:10.47836/mjmhs19.s18.6
增加的干旱威胁着土壤微生物群落及其在农业土壤中控制的多种功能。这些土壤通常被矿物营养物质受精,但尚不清楚这种施肥如何改变土壤多功能性(SMF)的能力,以维持干旱,以及植物土质相互作用如何影响这些效果。在这项研究中,我们使用山草原土壤来测试矿物营养素(氮和磷)添加的互动效应,并在中间有和没有植物(Lolium Perenne)的SMF上进行了干旱,并在中含有植物中(Lolium Perenne)。我们根据与土壤微生物在其生物量中储存碳(C),氮(N)和磷(P)的能力相关的8个微生物特性计算了SMF,并通过有机物解聚,矿化,硝化,硝化物和否定性加工来处理这些元素。为了研究SMF响应的基础机制,我们表征了使用16S和18S rRNA扩增子测序的土壤化学计量和微生物群落组成的提示变化。我们的结果表明,在植物存在时,受精会降低SMF干旱的耐药性,但在未种植的山地草原土壤中观察到了相反的情况。我们的分析表明,这是由于植物的相互作用,受精和干旱造成了与高SMF相关的四种耦合特性:高土壤水分,低蛋白质C限制,高细菌多样性和低细菌革兰氏革兰氏阳性阳性:革兰氏阳性:革兰氏负比例。总的来说,我们的结果表明,减少矿物肥料在山地草原中的植物生产可以提高土壤在干旱期间保持其多功能性的能力。最后,我们的研究清楚地证明了植物在SMF对全球变化的复杂反应中的重要性,并表明结合化学计量和微生物多样性评估是一种强大的方法,可以解散基本机制。
先前或同时发生的上呼吸道(合并)感染会对下呼吸道疾病产生有害的传导作用。下呼吸道(合并)感染是全球发病率和死亡率的共同根源 [1]。人类上、下呼吸道感染的临床表现可能复杂且异质性强,因为病原体(即细菌、真菌、病毒和寄生虫)可以单独存在,也可以组合存在。例如,人们越来越多地认识到病毒-细菌(合并)感染的后果会影响社区获得性肺炎的表现和预后,并可深刻影响呼吸道疾病的伴随发展,经常导致需要重症监护 [2-6]。1 岁以下儿童、孕妇、老年人和免疫功能低下的宿主尤其容易受到影响。患有合并症的免疫功能正常的个体也面临更高的严重呼吸道感染风险,而这些感染往往需要重症监护 [7]。最近的 COVID-19 大流行进一步强调,病毒与真菌和细菌(合并)感染相结合时,往往会对人类健康产生毁灭性的影响 [8]。毫无疑问,呼吸道(合并)感染的负担是对全球健康的重大威胁,及时准确的诊断是普遍存在的必要性 [9,10]。考虑到抗生素耐药性微生物日益严重的普遍问题,对急性呼吸道(合并)感染进行快速准确的诊断在临床上非常重要,以降低长期(合并)感染的风险并提前应用针对病原体的特异性药物 [11,12]。例如,多重聚合酶链式反应 63 (PCR) 检测可在单一面板中对多种呼吸道病原体和抗菌素耐药性 (AMR) 标记物进行高级诊断,从而缩短诊断时间并减少
除草剂clopyralid的污染物(3,6-二氯-2-吡啶 - 羧酸,CLP)对生态系统构成了潜在的威胁。然而,普遍缺乏研究CLP对生物衍生过程扰动的研究,其生物反应机制尚不清楚。在此,对CLP的长期暴露进行了系统的研究,以探索其对硝化性能和动态微生物反应的影响。结果表明,CLP的低浓度(<15 mg/ L)最初引起严重的亚硝酸盐积累,而在长期适应后,CLP的浓度较高(35 E 60 mg/ L)没有进一步的影响。这项机械研究表明,CLP减少了亚硝酸盐还原酶(NIR)活性,并抑制了代谢活性(碳代谢和氮代谢),从而导致氧化应激和膜损伤,从而导致亚硝酸盐的积累。但是,经过80天以上的适应,几乎没有在60 mg/L Clp的情况下发现亚硝酸盐积累。提出,细胞外聚合物物质(EPS)的分泌在15 mg/l Clp时从75.03 mg/g VSS增加到60 mg/l Clp的109.97 mg/g VSS,从而增强了微生物细胞的保护和改善的NIR活性和改善的NIR活性和代谢活性。此外,Mi-Crobial社区的生物多样性和丰富性经历了U形过程。最初硝化和代谢相关的微生物的相对丰度最初降低,然后随着与EPS和N-酰基 - 糖烯内酯分泌有关的微生物的富集而回收。©2021作者。这些微生物保护了微生物免受有毒物质的影响,并调节了它们之间的相互作用。这项研究揭示了成功暴露于CLP后的硝化生物反应机制,并为分析和治疗含除草剂的废水提供了适当的指导。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
估计,由于抗生素耐药细菌引起的感染每年享有70万寿命。如果耐药细菌继续以相同的速度进化,则预计到2050年,该数字将增加到1000万。[5]同样,生物和非生物表面上生物膜的形成对人类健康也面临着另一个重大挑战。生物膜形成。[2,3,6]在生物膜形成期间,微生物经历了几种生物学变化,导致细胞外聚合物物质(EPS)产生。EPS矩阵可防止并从攻击生物膜的化学物质和其他毒素中产生微生物。这使得很难使用传统的抗生素治疗生物膜,并使微生物获得抗菌抗性。[7]解决此问题的一种方法是使用抗菌材料和表面,以抑制抑制性细胞的附着和生物膜的形成。[4,8–13]这种抗菌材料作为工程材料的作用至关重要,因为这些材料可能有助于我们减少对抗生素和消毒剂的依赖。已经采用了各种技术来制造抗臭材料,包括用杀菌层涂上材料表面。[11,14–18]常见方法是基于从材料表面(例如金属衍生物和抗生素)释放杀菌剂的。[24]因此,当地形特征的尺寸在亚微米和纳米长度尺度中时,表面会抑制细菌的附着。[18]一种替代方法涉及将微/纳米摄影应用于消除细菌细胞的应用,并且在过去十年中,这种方法引起了很大的兴趣。[19-21]具有独特的微/纳米尺度表面纹理和特征的材料已被证明可以有效禁止细菌附着并防止生物膜形成。[22,23]提出,当地形特征的尺寸小于细菌细胞的尺寸时,降低了附着的细胞的可用接触区域。由于其表面地形特征,许多天然材料已经获得了防染色和反抗性行为。[11,25,26]这激发了科学家开发类似的材料和结构,这些材料和结构限制了生物膜形成并积极消除与表面接触的细菌。这样的
全球水产养殖可持续发展的最大挑战之一是传染病的威胁。需要减少抗生素使用的预防性策略,以确保鱼类健康,最大程度地减少传染病和随后的药物干预措施。最近的策略涉及促进健康的饲料SUP成熟,例如锦葵和益生菌细菌。astaxanthin是一种广泛使用的类胡萝卜素,具有颜色和抗氧化特性,可在受病原体挑战时改善鱼类生长和鱼类的生存。益生菌可以为鱼类提供一系列健康益处,包括增强的饲料消化,维生素的合成,先天免疫反应的增强以及对潜在病原体的主动防御。在这项研究中,我们测试了是否可以将新型益生菌混合物(枯草芽孢杆菌和/或芽孢杆菌含量)用作替代健康和/或化学补充剂,用于在两个塞浦路斯物种,镜片腕(Cyprinus carpio)和红彗星(Carassius auratus auratus auratus)中为astaxanthin superations。使用实验饲料试验和16S rRNA mi焦虫分析,评估了益生菌对远端胃肠道中鱼类生长和微生物群落的影响。此外,在镜鲤鱼中,对血液样本进行了免疫学和血液学参数的测试,而在金鱼中,则分析了皮肤的颜色。胶质鲤鱼食用的astaxanthin显示出显着增加的生长,而B. septilis /b.Indicus柔软的意识对生长绩效的影响无显着影响。在镜鲤鱼,astax anthin和益生菌混合物中会引起肠道微生物群落的显着转变。我们的结果提供了第一个见解,即补充脂肪素的补充如何改变Cyprinid物种中的微生物组成。镜面鲤鱼喂食B. dementilis/b。Indicus显示了潜在的微生物和健康益处的几个指数,例如增加了DI疗法,丰富了潜在的有益细菌以及增强吞噬性活性并创造了无性血液水平。然而,在两个密切相关的塞浦路斯物种中,在金鱼中没有发现对益生菌反应的大量物种特异性差异,对颜色,生长或微生物群落没有影响。进一步研究了补充细菌在鱼类胃睾丸睾丸中的疗效和定殖位点,并且需要在宿主微生物群中观察到的变化的机制,以完全理解对益生菌补充物的物种特异性反应。